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Abstract

The general perception is that kernel methods are not scalable, so neural nets be-
come the choice for large-scale nonlinear learning problems. Have we tried hard
enough for kernel methods? In this paper, we propose an approach that scales up
kernel methods using a novel concept called “doubly stochastic functional gradi-
ents”. Based on the fact that many kernel methods can be expressed as convex
optimization problems, our approach solves the optimization problems by mak-
ing two unbiased stochastic approximations to the functional gradient—one using
random training points and another using random features associated with the
kernel—and performing descent steps with this noisy functional gradient. Our
algorithm is simple, need no commit to a preset number of random features, and
allows the flexibility of the function class to grow as we see more incoming data in
the streaming setting. We demonstrate that a function learned by this procedure af-
ter t iterations converges to the optimal function in the reproducing kernel Hilbert
space in rate O(1/t), and achieves a generalization bound of O(1/

√
t). Our ap-

proach can readily scale kernel methods up to the regimes which are dominated by
neural nets. We show competitive performances of our approach as compared to
neural nets in datasets such as 2.3 million energy materials from MolecularSpace,
8 million handwritten digits from MNIST, and 1 million photos from ImageNet
using convolution features.

1 Introduction
The general perception is that kernel methods are not scalable. When it comes to large-scale non-
linear learning problems, the methods of choice so far are neural nets although theoretical under-
standing remains incomplete. Are kernel methods really not scalable? Or is it simply because we
have not tried hard enough, while neural nets have exploited sophisticated design of feature architec-
tures, virtual example generation for dealing with invariance, stochastic gradient descent for efficient
training, and GPUs for further speedup?

A bottleneck in scaling up kernel methods comes from the storage and computation cost of the
dense kernel matrix, K. Storing the matrix requires O(n2) space, and computing it takes O(n2d)
operations, where n is the number of data points and d is the dimension. There have been many great
attempts to scale up kernel methods, including efforts in perspectives of numerical linear algebra,
functional analysis, and numerical optimization.

A common numerical linear algebra approach is to approximate the kernel matrix using low-rank
factorizations, K ≈ A>A, with A ∈ Rr×n and rank r 6 n. This low-rank approximation allows
subsequent kernel algorithms to directly operate on A, but computing the approximation requires
O(nr2 + nrd) operations. Many work followed this strategy, including Greedy basis selection
techniques [1], Nyström approximation [2] and incomplete Cholesky decomposition [3]. In prac-
tice, one observes that kernel methods with approximated kernel matrices often result in a few
percentage of losses in performance. In fact, without further assumption on the regularity of the
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kernel matrix, the generalization ability after using low-rank approximation is typically of order
O(1/

√
r + 1/

√
n) [4, 5], which implies that the rank needs to be nearly linear in the number of

data points! Thus, in order for kernel methods to achieve the best generalization ability, low-rank
approximation based approaches immediately become impractical for big datasets because of their
O(n3 + n2d) preprocessing time and O(n2) storage.

Random feature approximation is another popular approach for scaling up kernel methods [6, 7].
The method directly approximates the kernel function instead of the kernel matrix using explicit
feature maps. The advantage of this approach is that the random feature matrix for n data points
can be computed in time O(nrd) using O(nr) storage, where r is the number of random features.
Subsequent algorithms then only need to operate on an O(nr) matrix. Similar to low-rank kernel
matrix approximation approach, the generalization ability of this approach is of the orderO(1/

√
r+

1/
√
n) [8, 9], which implies that the number of random features also needs to be O(n). Another

common drawback of these two approaches is that adapting the solution from a small r to a large
r′ is not easy if one wants to increase the rank of the approximated kernel matrix or the number of
random features for better generalization ability. Special procedures need to be designed to reuse
the solution obtained from a small r, which is not straightforward.

Another approach that addresses the scalability issue rises from the optimization perspective. One
general strategy is to solve the dual forms of kernel methods using the block-coordinate descen-
t (e.g., [10, 11, 12]). Each iteration of this algorithm only incurs O(nrd) computation and O(nr)
storage, where r is the block size. A second strategy is to perform functional gradient descent
based on a batch of data points at each epoch (e.g., [13, 14]). Thus, the computation and storage in
each iteration required are also O(nrd) and O(nr), respectively, where r is the batch size. These
approaches can straightforwardly adapt to a different r without restarting the optimization proce-
dure and exhibit no generalization loss since they do not approximate the kernel matrix or function.
However, a serious drawback of these approaches is that, without further approximation, all support
vectors need to be stored for testing, which can be as big as the entire training set! (e.g., kernel ridge
regression and non-separable nonlinear classification problems.)

In summary, there exists a delicate trade-off between computation, storage and statistics when
scaling up kernel methods. Inspired by various previous efforts, we propose a simple yet general
strategy that scales up many kernel methods using a novel concept called “doubly stochastic
functional gradients”. Our method relies on the fact that most kernel methods can be expressed
as convex optimization problems over functions in the reproducing kernel Hilbert spaces (RKHS)
and solved via functional gradient descent. Our algorithm proceeds by making two unbiased
stochastic approximations to the functional gradient, one using random training points and another
using random functions associated with the kernel, and then descending using this noisy functional
gradient. The key intuitions behind our algorithm originate from (i) the property of stochastic
gradient descent algorithm that as long as the stochastic gradient is unbiased, the convergence of
the algorithm is guaranteed [15]; and (ii) the property of pseudo-random number generators that the
random samples can in fact be completely determined by an initial value (a seed). We exploit these
properties and enable kernel methods to achieve better balances between computation, storage,
and statistics. Our method interestingly integrates kernel methods, functional analysis, stochastic
optimization, and algorithmic tricks, and it possesses a number of desiderata:
Generality and simplicity. Our approach applies to many kernel methods such as kernel version of
ridge regression, support vector machines, logistic regression and two-sample test as well as many
different types of kernels such as shift-invariant, polynomial, and general inner product kernels.
The algorithm can be summarized in just a few lines of code (Algorithm 1 and 2). For a dif-
ferent problem and kernel, we just need to replace the loss function and the random feature generator.
Flexibility. While previous approaches based on random features typically require a prefix number
of features, our approach allows the number of random features, and hence the flexibility of
the function class to grow with the number of data points. Therefore, unlike previous random
feature approach, our approach applies to the data streaming setting and achieves full potentials of
nonparametric methods.
Efficient computation. The key computation of our method comes from evaluating the doubly
stochastic functional gradient, which involves the generation of the random features given specific
seeds and also the evaluation of these features on a small batch of data points. At iteration t, the
computational complexity is O(td).
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Small memory. While most approaches require saving all the support vectors, the algorithm
allows us to avoid keeping the support vectors since it only requires a small program to regenerate
the random features and sample historical features according to some specific random seeds. At
iteration t, the memory needed is O(t), independent of the dimension of the data.
Theoretical guarantees. We provide novel and nontrivial analysis involving Hilbert space
martingales and a newly proved recurrence relation, and demonstrate that the estimator produced
by our algorithm, which might be outside of the RKHS, converges to the optimal RKHS function.
More specifically, both in expectation and with high probability, our algorithm estimates the optimal
function in the RKHS in the rate of O(1/t) and achieves a generalization bound of O(1/

√
t),

which are indeed optimal [15]. The variance of the random features introduced in our second
approximation to the functional gradient, only contributes additively to the constant in the conver-
gence rate. These results are the first of the kind in literature, which could be of independent interest.
Strong empirical performance. Our algorithm can readily scale kernel methods up to the regimes
which are previously dominated by neural nets. We show that our method compares favorably to
other scalable kernel methods in medium scale datasets, and to neural nets in big datasets with
millions of data.
In the remainder, we will first introduce preliminaries on kernel methods and functional gradients.
We will then describe our algorithm and provide both theoretical and empirical supports.

2 Duality between Kernels and Random Processes
Kernel methods owe their name to the use of kernel functions, k(x, x′) : X × X 7→ R, which are
symmetric positive definite (PD), meaning that for all n > 1, and x1, . . . , xn ∈ X , and c1, . . . , cn ∈
R, we have

∑n
i,j=1 cicjk(xi, xj) > 0. There is an intriguing duality between kernels and stochastic

processes which will play a crucial role in our algorithm design later. More specifically,

Theorem 1 (e.g., Devinatz [16]; Hein & Bousquet [17]) If k(x, x′) is a PD kernel, then there
exists a set Ω, a measure P on Ω, and random function φω(x) : X 7→ R from L2(Ω,P), such that
k(x, x′) =

∫
Ω
φω(x)φω(x′) dP(ω).

Essentially, the above integral representation relates the kernel function to a random process ω with
measure P(ω). Note that the integral representation may not be unique. For instance, the random
process can be a Gaussian process on X with the sample function φω(x), and k(x, x′) is simply
the covariance function between two point x and x′. If the kernel is also continuous and shift
invariant, i.e., k(x, x′) = k(x − x′) for x ∈ Rd, then the integral representation specializes into a
form characterized by inverse Fourier transformation (e.g., [18, Theorem 6.6]),

Theorem 2 (Bochner) A continuous, real-valued, symmetric and shift-invariant function k(x−x′)
on Rd is a PD kernel if and only if there is a finite non-negative measure P(ω) on Rd, such that
k(x− x′) =

∫
Rd e

iω>(x−x′) dP(ω) =
∫
Rd×[0,2π]

2 cos(ω>x+ b) cos(ω>x′ + b) d (P(ω)× P(b)) ,

where P(b) is a uniform distribution on [0, 2π], and φω(x) =
√

2 cos(ω>x+ b).

For Gaussian RBF kernel, k(x − x′) = exp(−‖x − x′‖2/2σ2), this yields a Gaussian distribution
P(ω) with density proportional to exp(−σ2‖ω‖2/2); for the Laplace kernel, this yields a Cauchy
distribution; and for the Martern kernel, this yields the convolutions of the unit ball [19]. Similar
representations where the explicit form of φω(x) and P(ω) are known can also be derived for rotation
invariant kernel, k(x, x′) = k(〈x, x′〉), using Fourier transformation on sphere [19]. For polynomial
kernels, k(x, x′) = (〈x, x′〉+ c)p, a random tensor sketching approach can also be used [20].

Instead of finding the random processes P(ω) and functions φω(x) given kernels, one can go the
reverse direction and construct kernels from random processes and functions (e.g., Wendland [18]).

Theorem 3 If k(x, x′) =
∫

Ω
φω(x)φω(x′) dP(ω) for a nonnegative measure P(ω) on Ω and

φω(x) : X 7→ R from L2(Ω,P), then k(x, x′) is a PD kernel.

For instance, φω(x) := cos(ω>ψθ(x)+ b), where ψθ(x) can be a random convolution of the input x
parametrized by θ. Another important concept is the reproducing kernel Hilbert space (RKHS). An
RKHSH on X is a Hilbert space of functions from X to R. H is an RKHS if and only if there exists
a k(x, x′) : X × X 7→ R such that ∀x ∈ X , k(x, ·) ∈ H, and ∀f ∈ H, 〈f(·), k(x, ·)〉H = f(x).
If such a k(x, x′) exists, it is unique and it is a PD kernel. A function f ∈ H if and only if
‖f‖2H := 〈f, f〉H <∞, and its L2 norm is dominated by RKHS norm, ‖f‖L2

6 ‖f‖H .
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3 Doubly Stochastic Functional Gradients
Many kernel methods can be written as convex optimization problems over functions in the RKHS
and solved using the functional gradient methods [13, 14]. Inspired by these previous work, we will
introduce a novel concept called “doubly stochastic functional gradients” to address the scalability
issue. Let l(u, y) be a scalar loss function convex of u ∈ R. Let the subgradient of l(u, y) with
respect to u be l′(u, y). Given a PD kernel k(x, x′) and the associated RKHS H, many kernel
methods try to find a function f∗ ∈ H which solves the optimization problem

argmin
f∈H

R(f) := E(x,y)[l(f(x), y)] +
ν

2
‖f‖2H ⇐⇒ argmin

‖f‖H6B(ν)

E(x,y)[l(f(x), y)] (1)

where ν > 0 is a regularization parameter, B(ν) is a non-increasing function of ν, and the data
(x, y) follow a distribution P(x, y). The functional gradient ∇R(f) is defined as the linear term in
the change of the objective after we perturb f by ε in the direction of g, i.e.,

R(f + εg) = R(f) + ε 〈∇R(f), g〉H +O(ε2). (2)

For instance, applying the above definition, we have ∇f(x) = ∇〈f, k(x, ·)〉H = k(x, ·), and
∇‖f‖2H = ∇〈f, f〉H = 2f .

Stochastic functional gradient. Given a data point (x, y) ∼ P(x, y) and f ∈ H, the stochastic
functional gradient of E(x,y)[l(f(x), y)] with respect to f ∈ H is

ξ(·) := l′(f(x), y)k(x, ·), (3)
which is essentially a single data point approximation to the true functional gradient. Furthermore,
for any g ∈ H, we have 〈ξ(·), g〉H = l′(f(x), y)g(x). Inspired by the duality between kernel func-
tions and random processes, we can make an additional approximation to the stochastic functional
gradient using a random function φω(x) sampled according to P(ω). More specifically,

Doubly stochastic functional gradient. Let ω ∼ P(ω), then the doubly stochastic gradient of
E(x,y)[l(f(x), y)] with respect to f ∈ H is

ζ(·) := l′(f(x), y)φω(x)φω(·). (4)
Note that the stochastic functional gradient ξ(·) is in RKHS H but ζ(·) may be outside H, since
φω(·) may be outside the RKHS. For instance, for the Gaussian RBF kernel, the random function
φω(x) =

√
2 cos(ω>x+ b) is outside the RKHS associated with the kernel function.

However, these functional gradients are related by ξ(·) = Eω [ζ(·)], which lead to unbiased estima-
tors of the original functional gradient, i.e.,

∇R(f) = E(x,y) [ξ(·)] + vf(·), and ∇R(f) = E(x,y)Eω [ζ(·)] + vf(·). (5)

We emphasize that the source of randomness associated with the random function is not present
in the data, but artificially introduced by us. This is crucial for the development of our scalable
algorithm in the next section. Meanwhile, it also creates additional challenges in the analysis of the
algorithm which we will deal with carefully.

4 Doubly Stochastic Kernel Machines
Algorithm 1: {αi}ti=1 = Train(P(x, y))

Require: P(ω), φω(x), l(f(x), y), ν.

1: for i = 1, . . . , t do
2: Sample (xi, yi) ∼ P(x, y).
3: Sample ωi ∼ P(ω) with seed i.
4: f(xi) = Predict(xi, {αj}i−1

j=1).
5: αi = −γil′(f(xi), yi)φωi

(xi).
6: αj = (1− γiν)αj for j = 1, . . . , i− 1.
7: end for

Algorithm 2: f(x) = Predict(x, {αi}ti=1)

Require: P(ω), φω(x).

1: Set f(x) = 0.
2: for i = 1, . . . , t do
3: Sample ωi ∼ P(ω) with seed i.
4: f(x) = f(x) + αiφωi(x).
5: end for

The first key intuition behind our algorithm originates from the property of stochastic gradient de-
scent algorithm that as long as the stochastic gradient is bounded and unbiased, the convergence of
the algorithm is guaranteed [15]. In our algorithm, we will exploit this property and introduce two
sources of randomness, one from data and another artificial, to scale up kernel methods.
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The second key intuition behind our algorithm is that the random functions used in the doubly
stochastic functional gradients will be sampled according to pseudo-random number generators,
where the sequences of apparently random samples can in fact be completely determined by an
initial value (a seed). Although these random samples are not the “true” random sample in the
purest sense of the word, they suffice for our task in practice.

To be more specific, our algorithm proceeds by making two stochastic approximation to the function-
al gradient in each iteration, and then descending using this noisy functional gradient. The overall
algorithms for training and prediction are summarized in Algorithm 1 and 2. The training algo-
rithm essentially just performs samplings of random functions and evaluations of doubly stochastic
gradients and maintains a collection of real numbers {αi}, which is computationally efficient and
memory friendly. A crucial step in the algorithm is to sample the random functions with “seed i”.
The seeds have to be aligned between training and prediction, and with the corresponding αi ob-
tained from each iteration. The learning rate γt in the algorithm needs to be chosen as O(1/t), as
shown by our later analysis to achieve the best rate of convergence. For now, we assume that we
have access to the data generating distribution P(x, y). This can be modified to sample uniformly
randomly from a fixed dataset, without affecting the algorithm and the later convergence analysis.
Let the sampled data and random function parameters be Dt := {(xi, yi)}ti=1 and ωt := {ωi}ti=1,
respectively after t iteration. The function obtained by Algorithm 1 is a simple additive form of the
doubly stochastic functional gradients

ft+1(·) = ft(·)− γt(ζt(·) + νft(·)) =
∑t

i=1
aitζi(·), ∀t > 1, and f1(·) = 0, (6)

where ait = −γi
∏t
j=i+1(1− γjν) are deterministic values depending on the step sizes γj(i 6 j 6

t) and regularization parameter ν. This simple form makes it easy for us to analyze its convergence.

We note that our algorithm can also take a mini-batch of points and random functions at each step,
and estimate an empirical covariance for preconditioning to achieve potentially better performance.

5 Theoretical Guarantees
In this section, we will show that, both in expectation and with high probability, our algorithm
can estimate the optimal function in the RKHS with rate O(1/t) and achieve a generalization
bound of O(1/

√
t). The analysis for our algorithm has a new twist compared to previous analysis

of stochastic gradient descent algorithms, since the random function approximation results in
an estimator which is outside the RKHS. Besides the analysis for stochastic functional gradient
descent, we need to use martingales and the corresponding concentration inequalities to prove that
the sequence of estimators, ft+1, outside the RKHS converge to the optimal function, f∗, in the
RKHS. We make the following standard assumptions ahead for later references:

A. There exists an optimal solution, denoted as f∗, to the problem of our interest (1).
B. Loss function `(u, y) : R × R → R and its first-order derivative is L-Lipschitz continous

in terms of the first argument.
C. For any data {(xi, yi)}ti=1 and any trajectory {fi(·)}ti=1, there exists M > 0, such that
|`′(fi(xi), yi)| 6 M . Note in our situation M exists and M < ∞ since we assume
bounded domain and the functions ft we generate are always bounded as well.

D. There exists κ > 0 and φ > 0, such that k(x, x′) 6 κ, |φω(x)φω(x′)| 6 φ, ∀x, x′ ∈
X , ω ∈ Ω. For example, when k(·, ·) is the Gaussian RBF kernel, we have κ = 1, φ = 2.

We now present our main theorems as below. Due to the space restrictions, we will only provide a
short sketch of proofs here. The full proofs for the these theorems are given in the appendix.
Theorem 4 (Convergence in expectation) When γt = θ

t with θ > 0 such that θν ∈ (1, 2) ∪ Z+,

EDt,ωt

[
|ft+1(x)− f∗(x)|2

]
6

2C2 + 2κQ2
1

t
, for any x ∈ X

where Q1 = max
{
‖f∗‖H , (Q0 +

√
Q2

0 + (2θν − 1)(1 + θν)2θ2κM2)/(2νθ − 1)
}

, with Q0 =

2
√

2κ1/2(κ+ φ)LMθ2, and C2 = 4(κ+ φ)2M2θ2.
Theorem 5 (Convergence with high probability) When γt = θ

t with θ > 0 such that θν ∈ Z+,
for any x ∈ X , we have with probability at least 1− 3δ over (Dt,ωt),

|ft+1(x)− f∗(x)|2 6
C2 ln(2/δ)

t
+

2κQ2
2 ln(2t/δ) ln2(t)

t
,
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where C is as above and Q2 = max
{
‖f∗‖H , Q0 +

√
Q2

0 + κM2(1 + θν)2(θ2 + 16θ/ν)
}

, with

Q0 = 4
√

2κ1/2Mθ(8 + (κ+ φ)θL).

Proof sketch: We focus on the convergence in expectation; the high probability bound can be
established in a similar fashion. The main technical difficulty is that ft+1 may not be in the RKHS
H. The key of the proof is then to construct an intermediate function ht+1, such that the difference
between ft+1 and ht+1 and the difference between ht+1 and f∗ can be bounded. More specifically,

ht+1(·) = ht(·)− γt(ξt(·) + νht(·)) =
∑t

i=1
aitξi(·), ∀t > 1, and h1(·) = 0, (7)

where ξt(·) = Eωt
[ζt(·)]. Then for any x, the error can be decomposed as two terms

|ft+1(x)− f∗(x)|2 6 2 |ft+1(x)− ht+1(x)|2︸ ︷︷ ︸
error due to random functions

+ 2κ ‖ht+1 − f∗‖2H︸ ︷︷ ︸
error due to random data

For the error term due to random functions, ht+1 is constructed such that ft+1 − ht+1 is a mar-
tingale, and the stepsizes are chosen such that |ait| 6 θ

t , which allows us to bound the martingale.
In other words, the choices of the stepsizes keep ft+1 close to the RKHS. For the error term
due to random data, since ht+1 ∈ H, we can now apply the standard arguments for stochastic
approximation in the RKHS. Due to the additional randomness, the recursion is slightly more
complicated, et+1 6

(
1− 2νθ

t

)
et + β1

t

√
et
t + β2

t2 , where et+1 = EDt,ωt [‖ht+1 − f∗‖2H], and
β1 and β2 depends on the related parameters. Solving this recursion then leads to a bound for the
second error term.

Theorem 6 (Generalization bound) Let the true risk beRtrue(f) = E(x,y) [l(f(x), y)]. Then with
probability at least 1− 3δ over (Dt,ωt), and C and Q2 defined as previously

Rtrue(ft+1)−Rtrue(f∗) 6
(C
√

ln(8
√
et/δ) +

√
2κQ2

√
ln(2t/δ) ln(t))L√

t
.

Proof By the Lipschitz continuity of l(·, y) and Jensen’s Inequality, we have

Rtrue(ft+1)−Rtrue(f∗) 6 LEx|ft+1(x)−f∗(x)| 6 L
√
Ex|ft+1(x)− f∗(x)|2 = L‖ft+1−f∗‖2.

Again, ‖ft+1− f∗‖2 can be decomposed as two terms O
(
‖ft+1 − ht+1‖22

)
and O(‖ht+1 − f∗‖2H),

which can be bounded similarly as in Theorem 5 (see Corollary 12 in the appendix).

Remarks. The overall rate of convergence in expectation, which is O(1/t), is indeed optimal. Clas-
sical complexity theory (see, e.g. reference in [15]) shows that to obtain ε-accuracy solution, the
number of iterations needed for the stochastic approximation is Ω(1/ε) for strongly convex case and
Ω(1/ε2) for general convex case. Different from the classical setting of stochastic approximation,
our case imposes not one but two sources of randomness/stochasticity in the gradient, which intu-
itively speaking, might require higher order number of iterations for general convex case. However,
our method is still able to achieve the same rate as in the classical setting. The rate of the general-
ization bound is also nearly optimal up to log factors. However, these bounds may be further refined
with more sophisticated techniques and analysis. For example, mini-batch and preconditioning can
be used to reduce the constant factors in the bound significantly, the analysis of which is left for
future study. Theorem 4 also reveals bounds in L∞ and L2 sense as in Section A.2 in the appendix.
The choices of stepsizes γt and the tuning parameters given in these bounds are only for sufficient
conditions and simple analysis; other choices can also lead to bounds in the same order.

6 Computation, Storage and Statistics Trade-off
To investigate computation, storage and statistics trade-off, we will fix the desired L2 error in the
function estimation to ε, i.e., ‖f − f∗‖22 6 ε, and work out the dependency of other quantities on ε.
These other quantities include the preprocessing time, the number of samples and random features
(or rank), the number of iterations of each algorithm, and the computational cost and storage require-
ment for learning and prediction. We assume that the number of samples, n, needed to achieve the
prescribed error ε is of the order O(1/ε), the same for all methods. Furthermore, we make no other
regularity assumption about margin properties or the kernel matrix such as fast spectrum decay. Thus
the required number of random feature (or ranks) r will be of the order O(n) = O(1/ε) [4, 5, 8, 9].

6



We will pick a few representative algorithms for comparison, namely, (i) NORMA [13]: kernel
methods trained with stochastic functional gradients; (ii) k-SDCA [12]: kernelized version of s-
tochastic dual coordinate ascend; (iii) r-SDCA: first approximate the kernel function with random
features, and then run stochastic dual coordinate ascend; (iv) n-SDCA: first approximate the ker-
nel matrix using Nyström’s method, and then run stochastic dual coordinate ascend; similarly we
will combine Pegasos algorithm [21] with random features and Nyström’s method, and obtain (v)
r-Pegasos, and (vi) n-Pegasos. The comparisons are summarized below.

From the table, one can see that our method, r-SDCA and r-Pegasos achieve the best dependency on
the dimension d of the data. However, often one is interested in increasing the number of random
features as more data points are observed to obtain a better generalization ability. Then special
procedures need to be designed for updating the r-SDCA and r-Pegasos solution, which we are not
clear how to implement easily and efficiently.

Algorithms Preprocessing Total Computation Cost Total Storage Cost
Computation Training Prediction Training Prediction

Doubly SGD O(1) O(d/ε2) O(d/ε) O(1/ε) O(1/ε)
NORMA/k-SDCA O(1) O(d/ε2) O(d/ε) O(d/ε) O(d/ε)
r-Pegasos/r-SDCA O(1) O(d/ε2) O(d/ε) O(1/ε) O(1/ε)
n-Pegasos/n-SDCA O(1/ε3) O(d/ε2) O(d/ε) O(1/ε) O(1/ε)

7 Experiments

We show that our method compares favorably to other kernel methods in medium scale datasets
and neural nets in large scale datasets. We examined both regression and classification problems
with smooth and almost smooth loss functions. Below is a summary of the datasets used1, and more
detailed description of these datasets and experimental settings can be found in the appendix.

Name Model # of samples Input dim Output range Virtual
(1) Adult K-SVM 32K 123 {−1, 1} no
(2) MNIST 8M 8 vs. 6 [25] K-SVM 1.6M 784 {−1, 1} yes
(3) Forest K-SVM 0.5M 54 {−1, 1} no
(4) MNIST 8M [25] K-logistic 8M 1568 {0, . . . , 9} yes
(5) CIFAR 10 [26] K-logistic 60K 2304 {0, . . . , 9} yes
(6) ImageNet [27] K-logistic 1.3M 9216 {0, . . . , 999} yes
(7) QuantumMachine [28] K-ridge 6K 276 [−800,−2000] yes
(8) MolecularSpace [28] K-ridge 2.3M 2850 [0, 13] no

Experiment settings. For datasets (1) – (3), we compare the algorithms discussed in Section 6. For
algorithms based on low rank kernel matrix approximation and random features, i.e., pegasos and
SDCA, we set the rank and number of random features to be 28. We use same batch size for both
our algorithm and the competitors. We stop algorithms when they pass through the entire dataset
once. This stopping criterion (SC1) is designed for justifying our conjecture that the bottleneck of
the performances of the vanilla methods with explicit feature comes from the accuracy of kernel
approximation. To this end, we investigate the performances of these algorithms under different
levels of random feature approximations but within the same number of training samples. To further
investigate the computational efficiency of the proposed algorithm, we also conduct experiments
where we stop all algorithms within the same time budget (SC2). Due to space limitation, the
comparison on regression synthetic dataset under SC1 and on (1) – (3) under SC2 are illustrated
in Appendix B.2. We do not count the preprocessing time of Nyström’s method for n-Pegasos and
n-SDCA. The algorithms are executed on the machine with AMD 16 2.4GHz Opteron CPUs and
200G memory. Note that this allows NORMA and k-SDCA to save all the data in the memory.
We report our numerical results in Figure 1(1)-(8) with explanations stated as below . For full details
of our experimental setups, please refer to section B.1 in Appendix.

Adult. The result is illustrated in Figure 1(1). NORMA and k-SDCA achieve the best error rate,
15%, while our algorithm achieves a comparable rate, 15.3%.

1 A “yes” for the last column means that virtual examples are generated from for training. K-ridge stands
for kernel ridge regression; K-SVM stands for kernel SVM; K-logistic stands for kernel logistic regression.
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Figure 1: Experimental results for dataset (1) – (8).

MNIST 8M 8 vs. 6. The result is shown in Figure 1(2). Our algorithm achieves the best test error
0.26%. Comparing to the methods with full kernel, the methods using random/Nyström features
achieve better test errors probably because of the underlying low-rank structure of the dataset.
Forest. The result is shown in Figure 1(3). Our algorithm achieves test error about 15%, much better
than the n/r-pegasos and n/r-SDCA. Our method is preferable for this scenario, i.e., huge datasets
with sophisticated decision boundary considering the trade-off between cost and accuracy.
MNIST 8M. The result is shown in Figure 1(4). Better than the 0.6% error provided by fixed and
jointly-trained neural nets, our method reaches an error of 0.5% very quickly.
CIFAR 10 The result is shown in Figure 1(5). We compare our algorithm to a neural net with
two convolution layers (after contrast normalization and max-pooling layers) and two local layer-
s achieving 11% test error. The specification is at https://code.google.com/p/cuda-convnet/. Our
method achieves comparable performance but much faster.
ImageNet The result is shown in Figure 1(6). Our method achieves test error 44.5% by further
max-voting of 10 transformations of the test set while the jointly-trained neural net arrives at 42%
(without variations in color and illumination), and the fixed neural net only achieves 46% with max-
voting.
QuantumMachine/MolecularSpace The results are shown in Figure 1(7) &(8). On dataset (7), our
method achieves Mean Absolute Error of 2.97 kcal/mole, outperforming neural nets, 3.51 kcal/mole,
which is close to the 1 kcal/mole required for chemical accuracy. Moreover, the comparison on
dataset (8) is the first in the literature, and our method is still comparable with neural net.
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