Homework #3 Solution

Due Mar 13 (Monday) at the beginning of class
Please show all work and intermediate steps. Late submission will lead to 0 credit.

Problem 1: Support Vector Machine

Support vector machine (SVM) is a popular model in machine learning used for classification. Mathematically, given a training dataset of m points

$$(x_1, y_1), \ldots, (x_m, y_m)$$

where $x_i \in \mathbb{R}^n$ stands for the feature vector and $y_i \in \{1, -1\}$ stands for two classes. The goal is to find two parallel hyperplanes represented by (w, b) with maximal margin that separates the two classes of data, such that for class with $y_i = 1$, we have $w^T x_i + b \geq 1$ and for class with $y_i = -1$, we have $w^T x_i + b \leq -1$. Hence, we wish to satisfy $y_i(w^T x_i + b) \geq 1$ for $i = 1, \ldots, m$.

![Illustration of SVM](image)

If the data is not fully separable, we allow for small margin errors $\epsilon_i > 0$, $i = 1, \ldots, m$, and we wish to also minimize these errors. This leads to solving the following optimization problem:

$$\min_{w, b, \epsilon} \frac{1}{2} \|w\|^2_2 + C \cdot \sum_{i=1}^{m} \epsilon_i$$

s.t. $y_i(w^T x_i + b) \geq 1 - \epsilon_i$, $i = 1, \ldots, m$
$\epsilon_i \geq 0$, $i = 1, \ldots, m$

where the parameter $C > 0$ plays a role of controlling the relative importance of minimizing the norm of w (i.e., maximizing the margin) and minimize the errors. Note that this problem is indeed a convex optimization problem.
Exercise 1.1 (Lagrange Duality) Let $\alpha \geq 0$ and $\beta \geq 0$ be the Lagrange multipliers associated with the two constraints. Show that the Lagrange dual problem of (P) is given by the quadratic program:

$$\max_{\alpha} \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

$$0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m \quad (D)$$

Moreover, show that the primal and dual optimal solutions satisfy that

$$\alpha_i = 0 \Rightarrow y_i (w^T x_i + b) \geq 1$$

$$\alpha_i = C \Rightarrow y_i (w^T x_i + b) \leq 1$$

$$0 < \alpha_i < C \Rightarrow y_i (w^T x_i + b) = 1$$

We call the data points with non-zero Lagrangian multipliers the support vectors.

Solution The Lagrange function is

$$L(w, b, \epsilon, \alpha, \beta) = \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{m} \epsilon_i - \sum_{i=1}^{m} \alpha_i (y_i (w^T x_i + b) - (1 - \epsilon_i)) - \sum_{i=1}^{m} \beta_i \epsilon_i$$

The Lagrange dual function is

$$L(\alpha, \beta) = \inf_{w, b, \epsilon} L(w, b, \epsilon, \alpha, \beta)$$

The infimum is achieved when

$$\nabla_w L = \nabla_b L = \nabla_\epsilon L = 0$$

which implies that

$$w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0$$

$$- \sum_{i=1}^{m} \alpha_i y_i = 0$$

$$C - \alpha_i - \beta_i = 0, \forall i = 1, \ldots, m$$

Hence, the Lagrange dual function is

$$L(\alpha, \beta) = \begin{cases} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j), & \text{if } \sum_{i=1}^{m} \alpha_i y_i = 0, \alpha_i + \beta_i = C \forall i = 1, \ldots, m \\ -\infty, & \text{otherwise} \end{cases}$$

Therefore, Lagrange dual problem is given by

$$\max_{\alpha} \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

$$0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m \quad (D)$$

The complementary slackness of KKT conditions says that for $i = 1, \ldots, m$

$$\alpha_i (y_i (w^T x_i + b) - 1 + \epsilon_i) = 0 \quad (1)$$

$$\beta_i \epsilon_i = 0 \quad (2)$$

Hence, we have
If \(\alpha_i = 0 \), we have \(\beta_i = C \) and \(\epsilon_i = 0 \), this implies that \(y_i(w^T x + b) \geq 1 \).

If \(\alpha_i = C \), we have \(y_i(w^T x_i + b) - 1 + \epsilon_i = 0 \) and \(\epsilon_i \geq 0 \), this implies that \(y_i(w^T x + b) \leq 1 \).

If \(\alpha_i \in (0, C) \), we have \(y_i(w^T x_i + b) - 1 + \epsilon_i = 0 \) and \(\epsilon_i = 0 \), this implies that \(y_i(w^T x + b) = 1 \).

Exercise 1.2 (Reformulation) Show that (P) can be equivalently written as an unconstrained convex problem

\[
\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} \max(1 - y_i(w^T x_i + b), 0) + \lambda \|w\|^2
\]

where \(\lambda > 0 \) is some parameter.

Solution The constraints in (P) implies that

\[
\epsilon_i \geq 1 - y_i(w^T x_i + b) \text{ and } \epsilon_i \geq 0
\]

which is equivalent to

\[
\epsilon_i \geq \max(1 - y_i(w^T x_i + b), 0)
\]

Hence, (P) can be rewritten as

\[
\min_{w,b} \frac{1}{2} \|w\|_2^2 + C \cdot \sum_{i=1}^{m} \max(1 - y_i(w^T x_i + b), 0)
\]

Let \(C = \frac{1}{2xm} \) for some \(\lambda > 0 \), then it can be further reformulated as

\[
\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} \max(1 - y_i(w^T x_i + b), 0) + \lambda \|w\|_2^2
\]

Exercise 1.3 (Programming) Implement the Ellipsoid method to solve the problem \((P') \) in Matlab or Python whichever you prefer. Your input should be the data matrix \(X \), \(y \) and the parameter \(\lambda \), and the maximum number of iterations \(T \). Your output should be the best solution and objective function value obtained after running the algorithm within \(T \) iterations.

Solution Sample code provided.

Exercise 1.4 (Test on Real Dataset) Apply your algorithm with \(T = 100 \) iterations on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset \((n = 30, m = 569)\) provided (read here for detailed description of the dataset) with \(\lambda = 1 \).

- Plot the objective function values at current solution, i.e. \(f(w_t) \) vs the number of iteration \(t \);
- On the same figure, plot the objective function values at best solution, i.e. \(\min_{1 \leq \tau \leq t} f(w_\tau) \) vs the number of iteration \(t \);
- Compute the classification error: the ratio of misclassified points (i.e. \(y_i(w^T x_i + b) < 1 \)).
Solution Sample result:

Figure 2: Ellipsoid Method for SVM on WBDC dataset