
IE 521 Convex Optimizatin UIUC, Spring 2017

N. He

Homework #2

Due Mar 1 (Wednesday) at the beginning of class
Please show all work and intermediate steps. Late submission will lead to 0 credit.

Problem 1: Subgradient and Subdifferential

Exercise 1.1 (Subdifferential) Calculate ∂f(x) for the following functions

(a) f(x) = max(1, |x| − 1) on R.

(b) f(x) = ‖x‖, where ‖ · ‖ is a norm on Rn.

Solution

(a)

∂f(x) =


sgn(x) |x| > 2

[−1, 0] x = −2

[0, 1] x = 2

{0} |x| < 2

(b)
∂f(x) = {g : gTx = ‖x‖ and ‖g‖∗ ≤ 1}

Exercise 1.2 (Subdifferential of Pointwise Maximum) Let f1, . . . , fm be convex functions and x ∈
∩mi=1int(dom(fi)). Let h(x) = max1≤i≤m fi(x), and I(x) be the set of all i ∈ {1, . . . ,m} such that fi(x) =
h(x).

(a) Use definition of subdifferential to show that Conv({∂fi(x) : i ∈ I(x)}) ⊆ ∂h(x).

(b) Use definiton of directional derivative to show that h′(x; d) = maxi∈I(x) f
′
i(x; d).

(c) Use separation theorem to show that Conv({∂fi(x) : i ∈ I(x)}) ⊇ ∂h(x).
[Hint: Use the fact that ∂fi(x) are compact convex and h′(x; d) = maxg∈∂h(x) g

T d. ]

Solution

(a) By definition of subdifferential, we have

∀i ∈ I(x), g ∈ ∂fi(x) : fi(y) ≥ fi(x) + gT (y − x),∀x, y

By definition of I(x), we know that fi(x) = h(x),∀i ∈ I(x). Hence

∀i ∈ I(x), g ∈ ∂fi(x) : h(y) ≥ h(x) + gT (y − x),∀x, y, i.e. g ∈ ∂h(x)

Hence, {∂fi(x) : i ∈ I(x)} ⊂ ∂h(x). Since ∂h(x) is a convex set, we further have Conv({∂fi(x) : i ∈
I(x)}) ⊆ ∂h(x).
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(b) By definition of directional derivative, we have

h′(x; d) = lim
t→0+

h(x+ td)− h(x)

t

= lim
t→0+

maxi∈I(x) fi(x+ td)− h(x)

t

= max
i∈I(x)

lim
t→0+

fi(x+ td)− h(x)

t

= max
i∈I(x)

lim
t→0+

fi(x+ td)− fi(x)

t

= max
i∈I(x)

f ′i(x; d)

(c) Let C = Conv({∂fi(x) : i ∈ I(x)}). Since ∂fi(x) is compact for any i ∈ I(x) and x ∈ ∩mi=1int(dom(fi)),
so C must be compact convex. Suppose C ( ∂h(x), then there exists g ∈ ∂h(x) and g 6= C. By
Separation Theorem, there exists a vector d 6= 0, such that dT g > supg∈C d

T g. This further implies that

dT g > sup
g∈C

dT g ≥ max
i∈I(x)

max
g∈∂fi(x)

dT g = max
i∈I(x)

f ′i(x; d) = h′(x; d) = max
g∈∂h(x)

dT g

which leads to a contradiction. Therefore, Conv({∂fi(x) : i ∈ I(x)}) ⊇ ∂h(x).

Combining with (a) and (c), we have that

∂h(x) = Conv({∂fi(x) : i ∈ I(x)}).

Exercise 1.3 (Directional Derivative) Let f be a convex function and x ∈ dom(f) and let d be such
that x+ αd ∈ dom(f) for α ∈ (0, δ) for some δ > 0. Show that the scalar function

φ(α) =
f(x+ αd)− f(x)

α

is non-decreasing function of α on (0, δ).

Solution Let α2 > α1 > 0. Note that x+ α1d = α1

α2
(x+ α2d) + (1− α1

α2
)x By convexity of f , we have

f(x+ α1d) =
α1

α2
f(x+ α2d) + (1− α1

α2
)f(x).

Rearranging terms leads to
f(x+ α1d)− f(x)

α1
≤ f(x+ α2d)

α2
.

Problem 2: Convex Conjugate

Exercise 2.1 (Compute Conjugate) Calculate the conjugate of the following functions:

(a) f(x) = ex on R

(b) f(x) = ‖x‖ on Rn

(c) f(x) = 1
2‖x‖

2 on Rn

(d) f(x) = log(
∑n
i=1 exp{xi}) on Rn
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Solution

(a) The conjugate for f(x) = ex is

f∗(y) =


y ln y − y, y > 0

0, y = 0

+∞, o.w.

(b) The conjugate for f(x) = ‖x‖ is

f∗(y) =

{
0, ‖y‖∗ ≤ 1

+∞, o.w.

(c) The conjugate for f(x) = 1
2‖x‖

2 is

f∗(y) =
1

2
‖y‖∗

(d) The conjugate for f(x) = log(
∑n
i=1 exp{xi}) is

f∗(y) =

{∑n
i=1 yi log(yi), if y ≥ 0 and

∑n
i=1 yi = 1

+∞, o.w.

Exercise 2.2 (Calculus of Conjugate) Prove the following

(a) (Scalar Multiplication) Let f(x) be convex and α > 0, then

(αf)∗(y) = αf∗(y/α)

(b) (Direct Summation) Let f(x1) and g(x2) be convex and h(x1, x2) = f(x1) + g(x2), then

h∗(y1, y2) = f∗(y1) + g∗(y2)

(c) (Weighted Summation) Let f(x) and g(x) be closed convex functions,and h(x) = f(x) + g(x), then

h∗(y) = inf
z
{f∗(z) + g∗(y − z)}

where the latter is the convolution of f∗ and g∗.
[Hint: First show that (infz{F (z) + G(y − z)})∗ = F ∗(y) + G∗(y), and then apply with F = f∗, and
G = g∗.]

Solution

(a) Scalar Multiplication:

(αf)∗(y) = sup
x
{yTx− αf(x)} = α sup

x
{(y/α)Tx− f(x)} = αf∗(y/α)

(b) Direct Summation:

h∗(y1, y2) = sup
x1,x2

{yT1 x1 + yT2 x2 − f(x1)− g(x2)}

= sup
x1

{y1Tx1 − f(x1)}+ sup
x2

{y2Tx2 − g(x2)}

= f∗(y1) + g∗(y2)
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(c) Weighted Summation: first, we prove the following equality (F�G)∗(x) = F ∗(x) + G∗(x) where F�G
denotes the convlution operator F�G = infy {F (y) +G(x− y)}. This is because

(F�G)∗(x) = sup
z

{
zTx− inf

y
(F (y) +G(z − y))

}
= sup

z

{
zTx− inf

y1+y2=z
(F (y1) +G(y2))

}
= sup

z

{
sup

y1+y2=z

{
(y1 + y2)Tx− F (y1)−G(y2)

}}
= sup
y1,y2

{
(y1 + y2)Tx− F (y1)−G(y2)

}
= sup

y1

{
yT1 x− F (y1)

}
+ sup

y2

{
y2
Tx−G(y2)

}
= F ∗(x) +G∗(x)

Using F = f∗, and G = g∗, and the fact that F ∗ = f and G∗ = g, this leads to

(f∗�g∗)∗(x) = f(x) + g(x)

Note that f + g is closed, so taking conjugate on both sides will still hold, i.e. f∗�g∗ is closed, hence,

(f∗�g∗)∗∗(x) = (f(x) + g(x))∗

We can also easily show that the convolution of two closed functions is still closed, i.e. f∗�g∗ =
(f∗�g∗)∗∗. Combining these these two facts, we arrive at

(f + g)∗(y) = (f∗�g∗)(y) = inf
z
{f∗(z) + g∗(y − z)}

Exercise 2.3 (Fenchel’s Inequality) We already know that for any x and y, xT y ≤ f(x) + f∗(y). Show
that xT y = f(x) + f∗(y) if and only if y ∈ ∂f(x).

Solution This is because

xT y = f(x) + f∗(y) ⇐⇒ xT y − f(x) = sup
z
{zT y − f(z)}

⇐⇒ xT y − f(x) ≥ zT y − f(z),∀z
⇐⇒ f(z) ≥ f(x) + yT (z − x),∀z
⇐⇒ y ∈ ∂f(x)

Problem 3: Lagrange Duality

Consider the following optimization problem in R2:

min
x1,x2

e−x2

s.t. ‖x‖2 ≤ x1
x2 ≥ 0

Exercise 3.1 (Representation Issue) Through this example, we are going to see that duality gap is
closely related to the “representation” of the constraints.

(a) Find the feasible set and optimal value.
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(b) Let us write the problem as
min{e−x2 : g(x) ≤ 0, x ∈ X}

where g(x) = ‖x‖2 − x1 and X = {(x1, x2) : x2 ≥ 0}. Does the slater condition holds? What is the dual
optimal value? Is there a duality gap?

(c) Let us write the problem as
min{e−x2 : g(x) ≤ 0, x ∈ X}

where g(x) = −x2 and X = {(x1, x2) : ‖x‖2 ≤ x1}. Does the slater condition holds? What is the dual
optimal value? Is there a duality gap?

Solution

(a) The feasible set is {(x1, x2) : x1 ≥ 0, x2 = 0}. The optimal value is 1.

(b) The Slater condition does not hold because there exists no x ∈ X such that g(x) < 0. The Lagrange
function is

L(x1, x2, λ) = e−x2 + λ(
√
x21 + x22 − x1)

For any λ > 0, the Lagrange dual function is

L(λ) = inf
x∈X

L(x1, x2, λ) = inf
x1∈R,x2≥0

e−x2 + λ(
√
x21 + x22 − x1) = 0

Hence, the optimal value of the Lagrange dual is equal to 0. Therefore, there is a duality gap.

(c) The (relaxed) Slater condition holds because there is only an equality constraint. The Lagrange function
is

L(x1, x2, λ) = e−x2 + λ(−x2)

For any λ > 0, the Lagrange dual function is

L(λ) = inf
x∈X

L(x1, x2, λ) = inf
x1,x2:‖x‖≤x1

e−x2 − λx2 = inf
x1,x2=0

e−x2 − λx2 = 1

Hence, the optimal value of the Lagrange dual is equal to 1. Therefore, there is no duality gap.

Remark. From this example, we can see that the duality gap issue depends on the “representation” of the
constraints.

Problem 4: Application in Finance

Consider assests S1,. . . , Sn(n ≥ 2) with random returns ξ1, . . . ξn. Let µi and σi denote the expected return
and standard deviation of the random return of asset Si, and ρij denote the correlation coefficient of the
returns of asset Si and Sj . Denote µ = [µ1; . . . ;µm] as the expected return of all assests, i.e. E[ξ] = µ.
Denote Σ = (σij) as the covariance matrix of the asset returns with σii = σ2

i and σij = ρijσiσj for i 6= j,
i.e. Var(ξ) = Σ.

Suppose an investor plans to invest the proportion xi of his total funds in asset i, for i = 1, . . . ,m. The
resulting portfolio is represented as x = (x1, . . . , xn) and

∑n
i=1 xi = 1. Assume short sale is not allowed,

i.e. xi ≥ 0 for any i. The investor wants to find the best portfolio strategy to maximize his total expected
return and meanwhile minimize his “risk”. One way to take both criterions into account is to minimize a
linear combination

−E[ξTx] + λVar[ξTx]

where λ > 0 is a risk-aversion constant and balances the resturn and risk.

Exercise 4.1 Assume there are no restrictions on the portfolio. Formulate the above problem into an
optimization model. Is the problem convex or not?
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Solution The optimization problem can be modeled as :

min
x

− µTx+ λ · xTΣx

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

The problem is convex.

Exercise 4.2 Write down the Karush-Kuhn-Tucker optimality conditions for the problem.

Solution Let us reformulate the problem into the standard form:

min
x

− µTx+ λ · xTΣx

n∑
i=1

xi − 1 ≤ 0 (y1)

1−
n∑
i=1

xi ≤ 0 (y2)

− x ≤ 0 (z)

Let y = (y1; y2) ≥ 0, z ≥ 0 be the Lagrange multipliers. The Lagrange function is

L(x, y, z) = −µTx+ λxTΣx+ (y1 − y2)(

n∑
i=1

xi − 1)− zTx

Let x∗ and (y∗, z∗) be the optimal primal-dual pair. The KKT condition says

(a) − µ+ 2λ · Σx∗ + (y∗1 − y∗2)1− z = 0

(b) y∗1(

n∑
i=1

x∗i − 1) = 0

(c) y∗2(1−
n∑
i=1

x∗i ) = 0

(d) z∗i x
∗
i = 0, i = 1, . . . , n

Exercise 4.3 An alternative risk measure is Value-at-Risk(VaR) developed by financial engineers at J.P.
Morgan. Given a probability level α ∈ (0, 1), the α-VaR of a random variable η is defined as:

VaRα(η) := min{γ : P (η ≥ γ) ≤ 1− α}

Now change the objective to minimize the Value-at-Risk of the total return, i.e., VaRα(ξTx) with some
α > 0.5. Simplify the new optimization problem. Is the new problem convex or not? What if when ξ is a
Gaussian random vector?

Solution To minimize the Value-at-Risk, we need to solve the optimization problem:

min
x

VaRα(ξTx)

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n
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Invoking the definition of Value-at-Risk, this can be simplified as

min
x,γ

γ

P (ξTx ≥ γ) ≤ 1− α
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

The problem may or may not be convex because the constraint function P (ξTx ≥ γ) may not be convex.

When ξ is a Gaussian random variable, we have ξTx ∼ N(µTx, xTΣx). Since

P (ξTx ≥ γ) = P (
ξTx− µTx√

xTΣx
≥ γ − µTx√

xTΣx
) = P (Z ≥ γ − µTx√

xTΣx
)

we have

P (ξTx ≥ γ) ≤ 1− α ⇐⇒ γ − µTx√
xTΣx

≥ Φ−1(α)

The original problem can be simplified as

min
x,γ

γ

− µTx+ Φ−1(α)
√
xTΣx− γ ≤ 0

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

Note that
√
xTΣx = ‖Σ1/2x‖2 is convex. Since α > 0.5, we have Φ−1(α) > 0. Hence, the constraint function

µTx+ Φ−1(α)
√
xTΣx− γ is convex. Thus, the optimization problem is convex.

Exercise 4.4 A well-known modification of the Value-at-Risk is conditional Value-at-Risk (CVaR), which
takes into account of the magnitute of random variables beyond the VaR value. Given a probability level
α ∈ (0, 1), the α-CVaR of a random variable η is defined as: CVaRα(η) := E[η|η ≥ VaRα(η)]. It can be
shown that

CVaRα(η) = min
γ>0
{γ +

1

1− α
E[(η − γ)+]}

where u+ := max(u, 0). Now change the objective to minimize the conditional Value-at-Risk of the total
return, i.e. CVaRα(ξTx) with some α > 0. Simplify the new optimization problem. Is the new problem
convex or not?

Solution To minimize the conditional Value-at-Risk, we need to solve the optimization problem:

min
x

CVaRα(ξTx)

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

Invoking the definition of conditional Value-at-Risk, this can be simplified as

min
x,γ>0

γ +
1

1− α
E[(ξTx− γ)+]

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n
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Note that the function (ξTx − γ)+ is convex in (x, γ) for any ξ, so the expectation E[(ξTx − γ)+] is also
convex in (x, γ). Thus, the optimization problem is convex.
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