
IE 521 Convex Optimizatin UIUC, Spring 2017

N. He

Homework #1 - Solution

Due Feb 15 (Wednesday) at the beginning of class
Part of solutions are provided by Xiaobo Dong.

Problem 1: Convex Sets

A real-valued function on Rn is called a norm, denoted as ‖ · ‖, if it satisfies the three properties:

• (positivity): ∀x ∈ Rn, ‖x‖ ≥ 0; ‖x‖ = 0 if an only if x = 0;

• (homogeneity): ∀x ∈ Rn, α ∈ R: ‖αx‖ = |α| · ‖x‖;

• (triangle inequality): ∀x, y ∈ Rn : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The standard norms on Rn are the `p-norms (p ≥ 1):

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

• [Euclidean norm]: p = 2, ‖x‖2 :=
√∑n

i=1 x
2
i ;

• [Manhattan norm]: p = 1, ‖x‖1 :=
∑n

i=1 |xi|;

• [Maximum norm]: p =∞, ‖x‖∞ := max1≤i≤n |xi|.

Exercise 1.1 (Dual Norm) The dual norm of ‖ · ‖ on Rn is defined as

‖x‖∗ = max
y∈Rn:‖y‖≤1

xT y

(a) Prove that ‖ · ‖∗ is a valid norm.

(b) Denote ‖x‖p,∗ as the dual norm to the `p-norm (p ≥ 1). Show that

‖x‖p,∗ = ‖x‖q, where
1

p
+

1

q
= 1.

Hence, ‖ · ‖2,∗ = ‖ · ‖2, ‖ · ‖1,∗ = ‖ · ‖∞, ‖ · ‖∞,∗ = ‖ · ‖1.
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Solution
(a) The positivity property is true, because we know

||x||∗ = max
y∈Rn:||y||≤1

xT y ≥ xT 0 = 0

The homogeneity property is true, because we know

||αx||∗ = max
y∈Rn:||y||≤1

αxT y = |α| · max
y∈Rn:||y||≤1

xT y = |α| · ||x||∗

The triangle inequality property is true, because we know

||x+ z||∗ = max
y∈Rn:||y||≤1

(x+ z)T y = max
y∈Rn:||y||≤1

(xT y + zT y)

Let y∗ be the optimal solution of the above. Then, we have

||x+ z||∗ = xT y∗ + zT y∗ ≤ max
y∈Rn:||y||≤1

xT y + max
y∈Rn:||y||≤1

zT y = ||x||∗ + ||z||∗

(b) For 1 < p, q <∞, we have

||x||p,∗ = max
y∈Rn:||y||p≤1

xT y

Now consider the following with Hölder’s inequality

xT y ≤
n∑
i=1

|xiyi| ≤ ||y||p · ||x||q ≤ ||x||q

Now the remaining part is to find a y such that the equality can hold. Let zi = sign(xi)|xi|q−1 for
all i ∈ [1, n]. We calculate

n∑
i=1

xizi =
n∑
i=1

xisign(xi)|xi|q−1 =
n∑
i=1

|xi|q = ||x||qq

Further, we calculate

||z||pp =

n∑
i=1

|zi|p =

n∑
i=1

∣∣∣∣sign(xi)|xi|q−1
∣∣∣∣p =

n∑
i=1

∣∣xi∣∣(q−1)p =

n∑
i=1

∣∣xi∣∣q = ||x||qq

Now constuct y = z
||z||p , and we have ||y||p = 1. Then we have

n∑
i=1

xiyi =

n∑
i=1

xi
zi
||z||p

=
1

||z||p

n∑
i=1

xizi =
1

||x||q/pq
||x||qq = ||x||q

Therefore,

||x||p,∗ = ||x||q

For p = 1 and q =∞ or p =∞ and q = 1, they are the trivial cases. The proof is similar but make
1 and ∞ be the pairs accordingly.
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Exercise 1.2 (Unit Ball) The unit ball of any norm ‖ · ‖ is the set

B‖·‖ = {x ∈ Rn : ‖x‖ ≤ 1}.

One can easily see that B‖·‖ is symmetric w.r.t. the origin (x ∈ B‖·‖ if and only −x ∈ B‖·‖) and
compact (closed and bounded) with nonempty interior. Show that the set B‖·‖ is convex.

Solution For any x, y ∈ B||·||, and for λ ∈ [0, 1]. Then we have

||λx+ (1− λ)y|| ≤ ||λx||+ ||(1− λ)y|| ≤ λ||x||+ (1− λ)||y|| ≤ λ+ (1− λ) = 1

Therefore, λx+ (1− λ)y ∈ B‖·‖. Hence, B||·|| is a convex set.

Exercise 1.3 (Vice Versa) Let B be convex, symmetric w.r.t. the origin, and compact with
nonempty interior. Show that the following function ‖ · ‖B:

‖x‖B = inf{t > 0 :
x

t
∈ B}

is a valid norm. Moreover, its unit ball is exactly the set B.

Solution The positivity property is true, because we know

||x||B = inf{t > 0 :
x

t
∈ B} ≥ 0

If||x||B = 0, then x ∈ tB, ∀t > 0, so x = 0.

The homogeneity property is true, because we know

||αx||B = inf{t > 0 :
αx

t
∈ B} = inf{αt′ > 0 :

αx

αt′
∈ B} = α inf{t′ > 0 :

x

t′
∈ B} = α||x||B

To show the triangle inequality property is true, it is suffient to show that

x+ y

||x||B + ||y||B
∈ B

This is true because by definition of ||x||B and ||y||B, x
||x||B ∈ B and y

||y||B ∈ B. Since B is a convex
set,

x+ y

||x||B + ||y||B
=

||x||B
||x||B + ||y||B

· x

||x||B
+

||y||B
||x||B + ||y||B

· y

||y||B
∈ B

Moreover,

B||·||B = {x ∈ Rn : ||x||B ≤ 1}

= {x ∈ Rn : inf{t > 0 :
x

t
∈ B} ≤ 1}

= {x ∈ Rn : x ∈ B}

The last step come from the fact that if x 6∈ B, then inf{t > 0 : xt ∈ B} > 1, which is a contradiction.
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Exercise 1.4 (Neighborhood of Convex Sets) Let X ⊂ Rn be a convex set and let ε > 0.
The ε-neighborhood of the set X under norm ‖ · ‖ is defined as

Xε = {x ∈ Rn : inf
y∈X
‖x− y‖ ≤ ε}.

Prove that Xε is a convex set.

Solution Let x and y be two arbitary elements in Xε. Then we have for any ε′ > ε,

∃u, v ∈ X, s.t. ‖x− u‖ ≤ ε′, ‖y − v‖ ≤ ε′.

For any λ ∈ [0, 1], ∃λu+ (1− λ)v ∈ X, such that

‖[λx+ (1− λ)y]− [λu+ (1− λ)v]‖ ≤ λ‖x− u‖+ (1− λ)‖y − b‖ ≤ ε′.

This implies that λx+ (1− λ)y ∈ Xε.

Problem 2: Strong Duality

Recall that in class we have shown the

[Farkas’ Lemma] Let A ∈ Rn×m and b ∈ Rm, exactly one of the two sets must be empty:

(i) : {x ∈ Rn : Ax = b, x ≥ 0}
(ii) : {y ∈ Rm : AT y ≤ 0, bT y > 0}

Exercise 2.1 (Variant of Farkas’ Lemma) Prove the following variant of Farkas’ Lemma:
exactly one of the following sets must be empty:

(i) : {x ∈ Rn : Ax ≤ b}
(ii) : {y ∈ Rm : y ≥ 0, AT y = 0, bT y < 0}

Solution We first show that system (i) is feasible → system (ii) infeasible Suppose there is a
x ∈ Rn such that Ax ≤ b, then for any y ≥ 0, we have

xT (AT y) = (Ax)T y ≤ bT y

If system (ii) is feasible, then there exists y ≥ 0, AT y = 0, bT y < 0, which implies

0 = xT (Ay) ≤ bT y < 0

leading to a contradiction. Therefore, (ii) is infeasible.
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We now show that system (i) infeasible → system (ii) feasible We can rewrite Ax ≤ b as A(x+ −
x−) + s = b, where (x+, x−, s) ≥ 0. Hence,

{x : Ax ≤ b} ⇔


x+x−
s

 :
[
A −A I

] x+x−
s

 = b,

x+x−
s

 ≥ 0


By Farkas’ Lemma, the infeasibility of this system implies that there exists y such that

bT y < 0,
[
A −A I

]T
y ≥ 0

This implies that y ≥ 0, AT y = 0, bT y < 0. Namely, system (ii) is feasible.

Overall, we know exactly one of them is empty.

Exercise 2.2 (Duality of Linear Program) The above lemma can be used to derive strong
duality of linear programs. Consider the primal and dual pair of linear programs:

min
x

cTx s.t. Ax = b, x ≥ 0 (P )

max
y

bT y s.t. AT y ≤ c (D)

Assume that the problem (P ) has an optimal solution x∗ with finite optimal value p∗.

(a) Let y be a feasible solution to (D), show that bT y ≤ p∗.

(b) Apply the above variant Farkas’ lemma to show that the following system

{y : AT y ≤ c, yT b ≥ p∗}

is nonempty, namely, there exists y that satisfies[
AT

−bT
]
y ≤

[
c
−p∗

]
.

Solution (a) Let y be a feasible solution to (D), then AT y ≤ c. Hence,

bT y = (Ax∗)
T y = xT∗ (AT y) ≤ xT∗ c = p∗.

(b) Suppose the above system is not feasible. By the variant of Farkas’ Lemma, ∃λ̃ =

[
λ
λ0

]
≥ 0,

such that {
Aλ− λ0b = 0

λT c− λ0p∗ < 0
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If λ0 > 0, then A( λλ0 ) = b and cT ( λλ0 ) < p∗, contradicts with p∗ being optimal

If λ0 = 0, then Aλ = 0, λT c < 0. then we can construct a feasible solution x = x∗ + λ that leads
to small objective,

cTx = cT (x∗ + λ) < cTx∗ = p∗

which contradicts with the optimality of x∗. Therefore, the assumption is not true, i.e. above
system must be feasible.

Combining (a) and (b), we can see that if problem (P) is solvable, then the dual problem (D) is
also solvable, and the optimal values are the same.

Problem 3: Convex Functions

A function f is called log-convex if f(x) > 0,∀x ∈ dom(f) and ln(f(x)) is convex.

Exercise 3.1 (Basic Properties) Show that

(a) If f is log-convex, then f is also convex.

(b) f is log-convex if and only if ∀λ ∈ [0, 1],∀x, y ∈ dom(f), we have f(λx + (1 − λ)y) ≤
f(x)λf(y)1−λ.

Solution (a) Let g(x) = ln(f(x)). Since f is log-convex, then g(x) is convex. Note that f(x) =
eg(x) is the composition of exponential function (convex and monotonically increasing) and a convex
function, then f is also convex.

(b) This is because

f(x) is log-convex ⇔ ln(f(x)) is convex

⇔ ∀x, y ∈ dom(f),∀λ ∈ [0, 1], ln
(
f(λx+ (1− λ)y)

)
≤ λ ln

(
f(x)

)
+ (1− λ) ln

(
f(y)

)
⇔ ∀x, y ∈ dom(f),∀λ ∈ [0, 1], eln

(
f(λx+(1−λ)y)

)
≤ eλ ln

(
f(x)
)
+(1−λ) ln

(
f(y)
)

⇔ ∀x, y ∈ dom(f),∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ f(x)λf(y)1−λ

Exercise 3.2 (Examples) Show that the following functions are log-convex.

(a) Exponentials: f(x) = eax is log-convex on R;

(b) Sum of exponentials: f(u, v) = eu + ev is log-convex on R2.
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Solution (a) First of all, we have f(x) > 0. Moreover, we have

ln
(
f(x)

)
= ax

is a linear function and is a convex function. Thus, f is log-convex.

(b) First of all, we have f(u, v) > 0. It suffices to show that the function g(u, v) = ln
(
f(u, v)

)
=

ln
(
eu + ev

)
is convex. The Hessian of function g(u, v) is given by

∇2g(u, v) =

[
euev

(eu+ev)2
− euev

(eu+ev)2

− euev

(eu+ev)2
euev

(eu+ev)2

]
Since ∇2g(u, v) � 0, g(u, v) is convex.

Exercise 3.3 (Convexity-Preserving Operation) If f and g are log-convex, then f+g is also
log-convex.

Solution Let u(x) = ln(f(x)) and v(x) = ln(g(x)). Since f and g are log-convex, we know that
u(x) and v(x) are convex. We already show that the function h(u, v) = ln(eu + ev) is convex in
(u, v). It is easy to show that this function is also coordinate-wise non-decreasing since the gradient
is always positive. Hence, the composition

h(x) = ln(eu(x) + ev(x))

is also convex. By definition of u(x) and v(x), we have h(x) = ln(f(x) + g(x)). Therefore, f + g is
log-convex.

Problem 4: Convex Sets and Convex Functions

Denote Sn as the set of real symmetric matrices of size n×n. Denote Sn+ as the set of positive semi-
definite matrices in Sn. Denote Sn++ as the set of positive definite matrices in Sn. The inner product
between two matrices in Sn is defined as 〈X,Y 〉 = Trace(XTY ) = Trace(XY ) =

∑n
k,l=1 xklykl.

Exercise 4.1 (Positive Semidefinite Cone) Recall that set C is a convex cone if ∀x, y ∈ C,
λ1x+ λ2y ∈ C for any λ1, λ2 ≥ 0. Prove that the set Sn+ is a convex cone.

Solution Let matrix A and B be in Sn+. Then for any x ∈ Rn, we have xTAx ≥ 0, xTBx ≥ 0.
Then for any λ1 ≥ 0 and λ2 ≥ 0, we have

xT (λ1A+ λ2B)x = λ1x
TAx+ λ2x

TBx ≥ 0

Therefore, Sn+ is convex cone.
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Exercise 4.2 (Linear Matrix Inequalities) Let A1, . . . , Ak, B ∈ Sn be symmetric matrices.
Show that the following set

C = {x ∈ Rk : B −
k∑
i=1

xiAi ∈ Sn+}

is convex.

Solution C can be considered as the inverse affine image of the set Sn under the affine mapping

A(x) : x 7→ B −
k∑
i=1

xiAi

i.e. C = A−1(Sn). Since Sn is convex, C is also convex.

Exercise 4.3 (Log-Determinant) Follow the steps below to show that the negative log-determinant
function f(X) = − ln(det(X)) : Sn++ → R is convex. Consequently, det(X)−1 is log-convex.

(a) Define φ(t) = − ln(det(X + tH)). Verify that φ(t) is well defined on an open interval I(X,H)
that contains the origin.

(b) Prove that φ(t) = φ(0)−
∑n

i=1 log(1 + tλi), where λ1, . . . , λn are eigenvalues of X−1/2HX−1/2.

(c) Combine (a) and (b) to show that f(X) is convex on Sn++.

Solution (a) First of all, we know when t = 0, φ(t) = − ln(det(X)) is well defined. Moreover, we
know in order to make φ(t) be well defined, we need det(X+ tH) to be positive. Since det(X+ tH)
is a continuous function in terms of t, then we know that an open interval which is related to H
and X including 0 have det(X + tH) > 0.

(b)

φ(t) = − ln

(
det
(
X + tH

))
= − ln

(
det
(
X

1
2 (I + tX−

1
2HX−

1
2 )X

1
2
))

= − ln

(
det
(
X

1
2
)
det
(
I + tX−

1
2HX−

1
2
)
det
(
X

1
2
))

= − ln

(
det
(
I + tX−

1
2HX−

1
2
)
det
(
X
))

= − ln

( n∏
i=1

(1 + tλi)

)
− ln(det(X))

= −
n∑
i=1

ln(1 + tλi) + φ(0)
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(c) Since

φ′(t) = −
n∑
i=1

λi
1 + tλi

φ′′(t) =
n∑
i=1

λ2i
(1 + tλi)2

≥ 0

Therefore, φ(t) is a convex function for any X,H. Hence, f(x) is convex.

Problem 5: Convex Optimization

Exercise 5.1 (Convex Reformulation) Show that the following optimization problem

min
x

f(x) := max
k=1,...,n

| log(aTk x)− log(bk)|

s.t. 0 ≤ xi ≤ 1, i = 1, . . . ,m

where ak ∈ Rm, bk ∈ R, k = 1, . . . , n are given, is equivalent to the following optimization problem

min
x

max
k=1,...,n

h(aTk x/bk)

s.t. 0 ≤ xi ≤ 1, i = 1, . . . ,m

where h(u) = max(u, 1/u) for u > 0. And show that the above problem is a convex program.

Solution

max
k=1,...,m

∣∣ log(aTk x)− log(bk)
∣∣ = max

k=1,...,m

∣∣ log(
aTk x

bk
)
∣∣

= max
k=1,...,m

max
{

log
(aTk x
bk

)
, log

( bk
aTk x

)}
= max

k=1,...,m
log
(

max
{aTk x
bk

,
bk
aTk x

})
= max

k=1,...,m
log h

((aTk x
bk

))

Since the log function is monotonic,

arg min
x:0≤x≤1

max
k=1,...,m

∣∣ log(aTk x)− log(bk)
∣∣ = arg min

x:0≤x≤1
max

k=1,...,m
log h

(aTk x
bk

)
= arg min

x:0≤x≤1
max

k=1,...,m
h
(aTk x
bk

)
Therefore, they are equivalent.
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Next, since the constraint is obviously a convex set, to show the above program is a convex program,

we need to show the function maxk=1,...,m h
(aTk x
bk

)
is convex.

Since h(u) = max(u, 1u) is convex on u > 0 (both u, 1/u are convex on u > 0). Therefore, h
(aTk x
bk

)
is a convex function. And we know taking pointwise maximum preserves convexity; therefore,

maxk=1,...,m h
(aTk x
bk

)
remains convex.
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