Homework #1

Due Feb 15 (Wednesday) at the beginning of class Please show all work and intermediate steps. Late submission will lead to 0 credit.

Problem 1: Convex Sets

A real-valued function on \mathbb{R}^n is called a *norm*, denoted as $\|\cdot\|$, if it satisfies the three properties:

- (positivity): $\forall x \in \mathbf{R}^n, ||x|| \ge 0$; ||x|| = 0 if an only if x = 0;
- (homogeneity): $\forall x \in \mathbf{R}^n, \alpha \in \mathbf{R}$: $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- (triangle inequality): $\forall x, y \in \mathbf{R}^n : ||x + y|| \le ||x|| + ||y||$.

The standard norms on \mathbf{R}^n are the ℓ_p -norms $(p \ge 1)$:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- [Euclidean norm]: p = 2, $||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$;
- [Manhattan norm]: p = 1, $||x||_1 := \sum_{i=1}^n |x_i|;$
- [Maximum norm]: $p = \infty$, $||x||_{\infty} := \max_{1 \le i \le n} |x_i|$.

Exercise 1.1 (Dual Norm) The dual norm of $\|\cdot\|$ on \mathbb{R}^n is defined as

$$||x||_* = \max_{y \in \mathbf{R}^n : ||y|| \le 1} x^T y$$

- (a) Prove that $\|\cdot\|_*$ is a valid norm.
- (b) Denote $||x||_{p,*}$ as the dual norm to the ℓ_p -norm $(p \ge 1)$. Show that

$$||x||_{p,*} = ||x||_q$$
, where $\frac{1}{p} + \frac{1}{q} = 1$.

Hence, $\|\cdot\|_{2,*} = \|\cdot\|_2$, $\|\cdot\|_{1,*} = \|\cdot\|_{\infty}$, $\|\cdot\|_{\infty,*} = \|\cdot\|_1$.

Exercise 1.2 (Unit Ball) The *unit ball* of any norm $\|\cdot\|$ is the set

$$B_{\|\cdot\|} = \{ x \in \mathbf{R}^n : \|x\| \le 1 \}.$$

One can easily see that $B_{\|\cdot\|}$ is symmetric w.r.t. the origin $(x \in B_{\|\cdot\|})$ if and only $-x \in B_{\|\cdot\|}$ and compact (closed and bounded) with nonempty interior. Show that the set $B_{\|\cdot\|}$ is convex.

Exercise 1.3 (Vice Versa) Let *B* be convex, symmetric w.r.t. the origin, and compact with nonempty interior. Show that the following function $\|\cdot\|_{B}$:

$$\|x\|_B = \inf\{t > 0: \frac{x}{t} \in B\}$$

is a valid norm. Moreover, its unit ball is exactly the set B.

Exercise 1.4 (Neighborhood of Convex Sets) Let $X \subset \mathbf{R}^n$ be a convex set and let $\epsilon > 0$. The ϵ -neighborhood of the set X under norm $\|\cdot\|$ is defined as

$$X^{\epsilon} = \{ x \in \mathbf{R}^n : \inf_{y \in X} \|x - y\| \le \epsilon \}.$$

Prove that X^{ϵ} is a convex set.

Problem 2: Strong Duality

Recall that in class we have shown the

[Farkas' Lemma] Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^m$, exactly one of the two sets must be empty:

(i): {
$$x \in \mathbf{R}^n : Ax = b, x \ge 0$$
}
(ii): { $y \in \mathbf{R}^m : A^T y \le 0, b^T y > 0$ }

Exercise 2.1 (Variant of Farkas' Lemma) Prove the following variant of Farkas' Lemma: exactly one of the following sets must be empty:

(i):
$$\{x \in \mathbf{R}^n : Ax \le b\}$$

(ii): $\{y \in \mathbf{R}^m : y \ge 0, A^T y = 0, b^T y < 0\}$

Exercise 2.2 (Duality of Linear Program) The above lemma can be used to derive strong duality of linear programs. Consider the primal and dual pair of linear programs:

$$\min_{x \to 0} c^T x \quad \text{s.t.} \ Ax = b, x \ge 0 \tag{P}$$

$$\max_{u} b^T y \quad \text{s.t.} \ A^T y \le c \tag{D}$$

Assume that the problem (P) has an optimal solution x_* with finite optimal value p_* .

- (a) Let y be a feasible solution to (D), show that $b^T y \leq p_*$.
- (b) Apply the above variant Farkas' lemma to show that the following system

$$\{y: A^T y \le c, y^T b \ge p_*\}$$

is nonempty, namely, there exists y that satisfies

$$\begin{bmatrix} A^T \\ -b^T \end{bmatrix} y \le \begin{bmatrix} c \\ -p_* \end{bmatrix}.$$

Problem 3: Convex Functions

A function f is called *log-convex* if $f(x) > 0, \forall x \in \mathbf{dom}(f)$ and $\ln(f(x))$ is convex.

Exercise 3.1 (Basic Properties) Show that

- (a) If f is log-convex, then f is also convex.
- (b) f is log-convex if and only if $\forall \lambda \in [0,1], \forall x, y \in \mathbf{dom}(f)$, we have $f(\lambda x + (1-\lambda)y) \leq f(x)^{\lambda} f(y)^{1-\lambda}$.

Exercise 3.2 (Examples) Show that the following functions are log-convex.

- (a) Exponentials: $f(x) = e^{ax}$ is log-convex on **R**;
- (b) Sum of exponentials: $f(u, v) = e^u + e^v$ is log-convex on \mathbb{R}^2 .

Exercise 3.3 (Convexity-Preserving Operation) If f and g are log-convex, then f + g is also log-convex.

Problem 4: Convex Sets and Convex Functions

Denote S^n as the set of real symmetric matrices of size $n \times n$. Denote S^n_+ as the set of positive semi-definite matrices in S^n . Denote S^n_{++} as the set of positive definite matrices in S^n . The inner product between two matrices in S^n is defined as $\langle X, Y \rangle = \text{Trace}(X^T Y) = \text{Trace}(XY) = \sum_{k,l=1}^n x_{kl} y_{kl}$.

Exercise 4.1 (Positive Semidefinite Cone) Recall that set *C* is a convex cone if $\forall x, y \in C, \lambda_1 x + \lambda_2 y \in C$ for any $\lambda_1, \lambda_2 \geq 0$. Prove that the set S^n_+ is a convex cone.

Exercise 4.2 (Linear Matrix Inequalities) Let $A_1, \ldots, A_k, B \in S^n$ be symmetric matrices. Show that the following set

$$C = \{x \in \mathbf{R}^k : B - \sum_{i=1}^k x_i A_i \in \mathcal{S}^n_+\}$$

is convex.

Exercise 4.3 (Log-Determinant) Follow the steps below to show that the negative log-determinant function $f(X) = -\ln(\det(X)) : S_{++}^n \to \mathbf{R}$ is convex. Consequently, $\det(X)^{-1}$ is log-convex.

- (a) Define $\phi(t) = -\ln(\det(X + tH))$. Verify that $\phi(t)$ is well defined on an open interval I(X, H) that contains the origin.
- (b) Prove that $\phi(t) = \phi(0) \sum_{i=1}^{n} \log(1 + t\lambda_i)$, where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of $X^{-1/2} H X^{-1/2}$.
- (c) Combine (a) and (b) to show that f(X) is convex on \mathcal{S}_{++}^n .

Problem 5: Convex Optimization

Exercise 5.1 (Convex Reformulation) Show that the following optimization problem

$$\min_{x} \quad f(x) := \max_{k=1,...,n} |\log(a_{k}^{T}x) - \log(b_{k})|$$
s.t. $0 \le x_{i} \le 1, i = 1, ..., m$

where $a_k \in \mathbf{R}^m, b_k \in \mathbf{R}, k = 1, \dots, n$ are given, is equivalent to the following optimization problem

$$\min_{x} \quad \max_{k=1,\dots,n} h(a_{k}^{T} x/b_{k})$$

s.t. $0 \le x_{i} \le 1, i = 1,\dots,m$

where $h(u) = \max(u, 1/u)$ for u > 0. And show that the above problem is a convex program.