IE 521 Convex Optimizatin UIUC, Spring 2017
N.He

Homework #1

Due Feb 15 (Wednesday) at the beginning of class
Please show all work and intermediate steps. Late submission will lead to 0 credit.

Problem 1: Convex Sets

A real-valued function on R is called a norm, denoted as || - ||, if it satisfies the three properties:
o (positivity): Yo € R™, ||z|| > 0; ||z|| = 0 if an only if z = 0;
o (homogeneity): Vo € R",a € R: ||ax| = |af - ||z|;
e (triangle inequality): Vz,y € R™ : ||z + y| < ||z|| + ||yll-

The standard norms on R™ are the ¢,-norms (p > 1):

n 1/p
lzllp == (Z mil”)

i=1
e [Euclidean norml: p =2, ||z||2 := />y 27

e [Manhattan norml|: p =1, ||z||; :== >0, |@il;

e [Maximum norm]: p = 00, ||2]|c = maxi<;<n |;|.

Exercise 1.1 (Dual Norm) The dual norm of || - || on R" is defined as
|« = max a7
yER™|lylI<1
(a) Prove that || - ||« is a valid norm.

(b) Denote ||z||p,« as the dual norm to the ¢,-norm (p > 1). Show that

1 1
Z||p.« = ||x||ls, Wwhere — + — = 1.
[Zllp = llllq P

Hence, || - [lz,e = [ ll25 I - [l1,0 = I lloos 1| - lloo,« = 1 - []1-

Exercise 1.2 (Unit Ball) The unit ball of any norm || - || is the set
By ={z e R": [lz] <1}.

One can easily see that B, is symmetric w.r.t. the origin (z € B if and only —z € B).) and compact
closed and bounded) with nonempty interior. Show that the se .| is convex.
losed and bounded) with ty interior. Show that the set By, i

Exercise 1.3 (Vice Versa) Let B be convex, symmetric w.r.t. the origin, and compact with nonempty
interior. Show that the following function || - || 5:

|z||p = inf{t > 0: % € B}

is a valid norm. Moreover, its unit ball is exactly the set B.



Exercise 1.4 (Neighborhood of Convex Sets) Let X C R"™ be a convex set and let € > 0. The
e-neighborhood of the set X under norm || - || is defined as

X={zeR": inf ||z —y|| <e}.
{z Jnf llz —yll <€}

Prove that X¢€ is a convex set.

Problem 2: Strong Duality
Recall that in class we have shown the
[Farkas’ Lemma] Let A € R™*™ and b € R™, exactly one of the two sets must be empty:

(0): {xeR": Az =b,xz >0}
(i) : {yeR™: ATy <0,b7y > 0}

Exercise 2.1 (Variant of Farkas’ Lemma) Prove the following variant of Farkas’ Lemma: exactly one
of the following sets must be empty:

()): {zeR":Ax <b}
(ii): {yeR™:y>0,ATy=0,b"y <0}

Exercise 2.2 (Duality of Linear Program) The above lemma can be used to derive strong duality of
linear programs. Consider the primal and dual pair of linear programs:

min ¢’z st. Az =b,x >0 (P)
x

max b'y st. ATy <ec (D)
Y
Assume that the problem (P) has an optimal solution z, with finite optimal value p,.
(a) Let y be a feasible solution to (D), show that b7y < p,.

(b) Apply the above variant Farkas’ lemma to show that the following system
{y: Ay <cy'v>p}

is nonempty, namely, there exists y that satisfies

e ls):

Problem 3: Convex Functions

A function f is called log-convex if f(x) > 0,Vz € dom(f) and In(f(z)) is convex.

Exercise 3.1 (Basic Properties) Show that
(a) If f is log-convex, then f is also convex.

(b) f is log-convex if and only if VA € [0,1],Vz,y € dom(f), we have f(A\z + (1 — \)y) < f(z) f(y)* .

Exercise 3.2 (Examples) Show that the following functions are log-convex.

€T

(a) Exponentials: f(z) = e®® is log-convex on R;

(b) Sum of exponentials: f(u,v) = e* + €V is log-convex on R2.



Exercise 3.3 (Convexity-Preserving Operation) If f and g are log-convex, then f + g is also log-
convex.

Problem 4: Convex Sets and Convex Functions

Denote 8™ as the set of real symmetric matrices of size n x n. Denote S} as the set of positive semi-definite
matrices in S". Denote St as the set of positive definite matrices in S™. The inner product between two
matrices in 8™ is defined as (X,Y) = Trace(X”Y) = Trace(XY) = Y0 || Triyni-

Exercise 4.1 (Positive Semidefinite Cone) Recall that set C' is a convex cone if Va,y € C, Mz + Aoy €
C for any A1, A2 > 0. Prove that the set S is a convex cone.

Exercise 4.2 (Linear Matrix Inequalities) Let A4;,..., Ak, B € 8™ be symmetric matrices. Show that
the following set

k
C={zeR*:B-) x4, €8]}
i=1

is convex.

Exercise 4.3 (Log-Determinant) Follow the steps below to show that the negative log-determinant
function f(X) = —In(det(X)) : ST, — R is convex. Consequently, det(X )" is log-convex.

(a) Define ¢(t) = —In(det(X + tH)). Verify that ¢(¢) is well defined on an open interval I(X, H) that
contains the origin.

(b) Prove that ¢(t) = ¢(0) — .1, log(1 + t);), where A1,...,\, are eigenvalues of X ~1/2 X ~1/2,

(c) Combine (a) and (b) to show that f(X) is convex on S%, .

Problem 5: Convex Optimization
Exercise 5.1 (Convex Reformulation) Show that the following optimization problem
min  f(z):= max |log(a}x) — log(by)]
T k=1,....n
st. 0<z; <1li=1,....m
where a € R™, b, € R,k =1,...,n are given, is equivalent to the following optimization problem

min  max h(alx/by)

T k=1,....n

st. 0<z; <1li=1,....m

where h(u) = max(u, 1/u) for u > 0. And show that the above problem is a convex program.



