
IE 521 Convex Optimizatin UIUC, Spring 2017

N.He

Homework #1

Due Feb 15 (Wednesday) at the beginning of class
Please show all work and intermediate steps. Late submission will lead to 0 credit.

Problem 1: Convex Sets

A real-valued function on Rn is called a norm, denoted as ‖ · ‖, if it satisfies the three properties:

• (positivity): ∀x ∈ Rn, ‖x‖ ≥ 0; ‖x‖ = 0 if an only if x = 0;

• (homogeneity): ∀x ∈ Rn, α ∈ R: ‖αx‖ = |α| · ‖x‖;

• (triangle inequality): ∀x, y ∈ Rn : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The standard norms on Rn are the `p-norms (p ≥ 1):

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

• [Euclidean norm]: p = 2, ‖x‖2 :=
√∑n

i=1 x
2
i ;

• [Manhattan norm]: p = 1, ‖x‖1 :=
∑n
i=1 |xi|;

• [Maximum norm]: p =∞, ‖x‖∞ := max1≤i≤n |xi|.

Exercise 1.1 (Dual Norm) The dual norm of ‖ · ‖ on Rn is defined as

‖x‖∗ = max
y∈Rn:‖y‖≤1

xT y

(a) Prove that ‖ · ‖∗ is a valid norm.

(b) Denote ‖x‖p,∗ as the dual norm to the `p-norm (p ≥ 1). Show that

‖x‖p,∗ = ‖x‖q, where
1

p
+

1

q
= 1.

Hence, ‖ · ‖2,∗ = ‖ · ‖2, ‖ · ‖1,∗ = ‖ · ‖∞, ‖ · ‖∞,∗ = ‖ · ‖1.

Exercise 1.2 (Unit Ball) The unit ball of any norm ‖ · ‖ is the set

B‖·‖ = {x ∈ Rn : ‖x‖ ≤ 1}.

One can easily see that B‖·‖ is symmetric w.r.t. the origin (x ∈ B‖·‖ if and only −x ∈ B‖·‖) and compact
(closed and bounded) with nonempty interior. Show that the set B‖·‖ is convex.

Exercise 1.3 (Vice Versa) Let B be convex, symmetric w.r.t. the origin, and compact with nonempty
interior. Show that the following function ‖ · ‖B :

‖x‖B = inf{t > 0 :
x

t
∈ B}

is a valid norm. Moreover, its unit ball is exactly the set B.
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Exercise 1.4 (Neighborhood of Convex Sets) Let X ⊂ Rn be a convex set and let ε > 0. The
ε-neighborhood of the set X under norm ‖ · ‖ is defined as

Xε = {x ∈ Rn : inf
y∈X
‖x− y‖ ≤ ε}.

Prove that Xε is a convex set.

Problem 2: Strong Duality

Recall that in class we have shown the

[Farkas’ Lemma] Let A ∈ Rn×m and b ∈ Rm, exactly one of the two sets must be empty:

(i) : {x ∈ Rn : Ax = b, x ≥ 0}
(ii) : {y ∈ Rm : AT y ≤ 0, bT y > 0}

Exercise 2.1 (Variant of Farkas’ Lemma) Prove the following variant of Farkas’ Lemma: exactly one
of the following sets must be empty:

(i) : {x ∈ Rn : Ax ≤ b}
(ii) : {y ∈ Rm : y ≥ 0, AT y = 0, bT y < 0}

Exercise 2.2 (Duality of Linear Program) The above lemma can be used to derive strong duality of
linear programs. Consider the primal and dual pair of linear programs:

min
x

cTx s.t. Ax = b, x ≥ 0 (P )

max
y

bT y s.t. AT y ≤ c (D)

Assume that the problem (P ) has an optimal solution x∗ with finite optimal value p∗.

(a) Let y be a feasible solution to (D), show that bT y ≤ p∗.

(b) Apply the above variant Farkas’ lemma to show that the following system

{y : AT y ≤ c, yT b ≥ p∗}

is nonempty, namely, there exists y that satisfies[
AT

−bT
]
y ≤

[
c
−p∗

]
.

Problem 3: Convex Functions

A function f is called log-convex if f(x) > 0,∀x ∈ dom(f) and ln(f(x)) is convex.

Exercise 3.1 (Basic Properties) Show that

(a) If f is log-convex, then f is also convex.

(b) f is log-convex if and only if ∀λ ∈ [0, 1],∀x, y ∈ dom(f), we have f(λx+ (1− λ)y) ≤ f(x)λf(y)1−λ.

Exercise 3.2 (Examples) Show that the following functions are log-convex.

(a) Exponentials: f(x) = eax is log-convex on R;

(b) Sum of exponentials: f(u, v) = eu + ev is log-convex on R2.
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Exercise 3.3 (Convexity-Preserving Operation) If f and g are log-convex, then f + g is also log-
convex.

Problem 4: Convex Sets and Convex Functions

Denote Sn as the set of real symmetric matrices of size n×n. Denote Sn+ as the set of positive semi-definite
matrices in Sn. Denote Sn++ as the set of positive definite matrices in Sn. The inner product between two
matrices in Sn is defined as 〈X,Y 〉 = Trace(XTY ) = Trace(XY ) =

∑n
k,l=1 xklykl.

Exercise 4.1 (Positive Semidefinite Cone) Recall that set C is a convex cone if ∀x, y ∈ C, λ1x+λ2y ∈
C for any λ1, λ2 ≥ 0. Prove that the set Sn+ is a convex cone.

Exercise 4.2 (Linear Matrix Inequalities) Let A1, . . . , Ak, B ∈ Sn be symmetric matrices. Show that
the following set

C = {x ∈ Rk : B −
k∑
i=1

xiAi ∈ Sn+}

is convex.

Exercise 4.3 (Log-Determinant) Follow the steps below to show that the negative log-determinant
function f(X) = − ln(det(X)) : Sn++ → R is convex. Consequently, det(X)−1 is log-convex.

(a) Define φ(t) = − ln(det(X + tH)). Verify that φ(t) is well defined on an open interval I(X,H) that
contains the origin.

(b) Prove that φ(t) = φ(0)−
∑n
i=1 log(1 + tλi), where λ1, . . . , λn are eigenvalues of X−1/2HX−1/2.

(c) Combine (a) and (b) to show that f(X) is convex on Sn++.

Problem 5: Convex Optimization

Exercise 5.1 (Convex Reformulation) Show that the following optimization problem

min
x

f(x) := max
k=1,...,n

| log(aTk x)− log(bk)|

s.t. 0 ≤ xi ≤ 1, i = 1, . . . ,m

where ak ∈ Rm, bk ∈ R, k = 1, . . . , n are given, is equivalent to the following optimization problem

min
x

max
k=1,...,n

h(aTk x/bk)

s.t. 0 ≤ xi ≤ 1, i = 1, . . . ,m

where h(u) = max(u, 1/u) for u > 0. And show that the above problem is a convex program.
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