In this lecture, we cover the following topics

- Illustrations of Lagrange Duality
- Saddle Point Formulation
- Optimality Conditions (KKT conditions)

References: Bental & Nemirovski Chapter 3.2

9.1 Recall

- Convex program:

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m \quad (P) \\
& x \in X
\end{align*}
\]

where \(f(x), g_1, \ldots, g_m \) are convex and \(X \) is convex.

- Lagrange function:

\[
L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)
\]

where \(\lambda = (\lambda_1, \ldots, \lambda_m) \) is called Lagrange multiplier.

- Lagrange dual function:

\[
L(\lambda) := \inf_{x \in X} L(x, \lambda) = \inf_{x \in X} \{ f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \}
\]

- Note that \(\forall \lambda \geq 0, L(\lambda) \leq \text{Opt}(P) \)

- Lagrange dual program:

\[
\max_{\lambda \geq 0} \quad L(\lambda)
\]

We show that \(\text{Opt}(D) = \text{Opt}(P) \) when (relaxed) Slater condition holds
9.2 Illustrations of Lagrange Duality

- Linear Program Duality

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
\text{max} & \quad b^T y \\
\text{s.t.} & \quad A^T y \leq c \\
\end{align*}
\]

First, rewrite the original problem as:

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad Ax - b \leq 0 \quad (\lambda_1) \\
& \quad b - Ax \leq 0 \quad (\lambda_2) \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

Introducing the multipliers \(\lambda = (\lambda_1, \lambda_2) \geq 0 \), the Lagrange function is

\[
L(x, \lambda) = c^T x + \lambda_1^T (Ax - b) + \lambda_2^T (b - Ax) = (c + A^T \lambda_1 - A^T \lambda_2)^T x + b^T (\lambda_2 - \lambda_1)
\]

The Lagrange dual function is

\[
L(\lambda) = \inf_{x \in \mathbb{R}^n} (c + A^T \lambda_1 - A^T \lambda_2)^T x + b^T (\lambda_2 - \lambda_1) = \begin{cases}
 b^T (\lambda_2 - \lambda_1), & c + A^T \lambda_1 - A^T \lambda_2 \geq 0 \\
 -\infty, & \text{o.w.}
\end{cases}
\]

The Lagrange dual is \(\max_{\lambda \geq 0} L(\lambda) \), which is equivalent to

\[
\max_{\lambda \geq 0} \quad b^T (\lambda_2 - \lambda_1) \\
\quad c + A^T (\lambda_1 - \lambda_2) \geq 0
\]

Substituting \(y = \lambda_2 - \lambda_1 \), the formulation above is also equivalent to:

\[
\max_{y} \quad b^T y \\
\text{s.t.} \quad A^T y \leq c
\]

- Quadratic Program Duality:

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} x^T Q x + q^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \frac{1}{2} y^T Q y + b^T \lambda \\
\text{s.t.} & \quad A^T \lambda - Q y = q \\
& \quad \lambda \geq 0
\end{align*}
\]

where \(Q \succ 0 \).
The Lagrange function is \(L(x, \lambda) = \frac{1}{2} x^T Q x + q^T x + \lambda^T (b - Ax) \).

The Lagrange dual function is \(\bar{L}(\lambda) = \inf_x \{ \frac{1}{2} x^T Q x + (q - A^T x) + b^T\lambda \} \).

The infimum is achieved when \(Q x = A^T \lambda - q, x = Q^{-1} (A^T \lambda - q) \).

The Lagrange dual is

\[
\bar{L}(\lambda) = -\frac{1}{2} (A^T \lambda - q)^T Q^{-1} (A^T \lambda - q) + b^T \lambda
\]

In both cases discussed above, strong duality holds true.

9.3 Saddle Point Formulation

Recall

\[
(P): \quad \min_{x \in X} \{ f(x) : g_i(x) \geq 0, i = 1, \ldots, m \} = \min_{x \in X} \bar{L}(x) = \min_{x \in X} \max_{\lambda \geq 0} L(x, \lambda)
\]

\[
(D): \quad \max_{\lambda \geq 0} \bar{L}(\lambda) = \max_{\lambda \geq 0} \min_{x \in X} L(x, \lambda)
\]

Definition 9.1 (*Saddle point*) We call \((x^*, \lambda^*)\), where \(x^* \in X, \lambda^* \geq 0\), a saddle point of \(L(x, \lambda)\) if \(L(x, \lambda^*) \geq L(x^*, \lambda^*) \geq L(x^*, \lambda), \forall x \in X, \lambda \geq 0\).

Theorem 9.2 \((x^*, \lambda^*)\) is saddle point of \(L(x, \lambda)\) if and only if \(x^*\) is an optimal solution \((P)\), \(\lambda^*\) is an optimal solution to \((D)\) and \(\text{Opt}(P) = \text{Opt}(D)\).

Proof:

\((\Rightarrow)\) Assume \((x^*, \lambda^*)\) is a saddle point,

\[
L(x, \lambda^*) \geq L(x^*, \lambda^*) \geq L(x^*, \lambda), \forall x \in X, \lambda \geq 0
\]

\[
\text{Opt}(P) = \inf_{x \in X} \bar{L}(x) \leq \bar{L}(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda) = L(x^*, \lambda^*)
\]

\[
\text{Opt}(D) = \sup_{\lambda \geq 0} L(\lambda) \geq L(\lambda^*) = \inf_{x \in X} L(x, \lambda^*) = L(x^*, \lambda^*)
\]

Hence, \(\text{Opt}(P) \leq L(x^*, \lambda^*) \leq \text{Opt}(D)\)

Combined with weak duality, we have \(\text{Opt}(P) = \text{Opt}(D)\). Hence, \(\text{Opt}(P) = \bar{L}(x^*) = L(x^*, \lambda^*) = L(\lambda^*) = \text{Opt}(D)\). Thus, \(x^*\) solves \((P)\), \(\lambda^*\) solves \((D)\), and \(\text{Opt}(P) = \text{Opt}(D)\)
Assume \((x^*, \lambda^*)\) are optimal solutions to \((P)\) and \((D)\), and \(\text{Opt}(P) = \text{Opt}(D)\). By optimality,

\[
\text{Opt}(P) = \bar{L}(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda) \geq L(x^*, \lambda^*)
\]

\[
\text{Opt}(D) = L(\lambda^*) = \inf_{x \in X} L(x, \lambda^*) \leq L(x^*, \lambda^*)
\]

Since \(\text{Opt}(D) = \text{Opt}(P)\)

\[
\sup_{\lambda \geq 0} L(x^*, \lambda) = L(x^*, \lambda^*) = \inf_{x \in X} L(x^*, \lambda)
\]

i.e. \((x^*, \lambda^*)\) is a saddle point of \(L(x, \lambda)\).

Remark:

- The above theorem holds true for any saddle function \(L(x, \lambda)\) and its induced primal and dual problems, not limited to the Lagrange function.
- Saddle point always exists for the Lagrange function of a solvable convex program satisfying the Slater condition. More generally, the existence of saddle points is guaranteed for convex-concave saddle functions over convex compact domains (Minimax Theorem).

9.4 Optimality Conditions

Theorem 9.3: Let \(x^* \in X\)

(i) *(sufficient condition)* If there exists \(\lambda^* \geq 0\), such that \((x^*, \lambda^*)\) is a saddle point of \(L(x, \lambda)\), then \(x^*\) is an optimal solution to \((P)\).

(ii) *(necessary condition)* Assume \((P)\) is convex and satisfies the Slater condition. If \(x^*\) is an optimal solution to \((P)\) then \(\exists \lambda^* \geq 0\), s.t. \((x^*, \lambda^*)\) is a saddle point of \(L(x, \lambda)\).

Proof:

(i) *(sufficient part)* Follows from previous theorem.

(ii) *(necessary part)* By strong duality theorem, \(\exists\) optimal dual solution \(\lambda^* \geq 0\), such that \(\text{Opt}(P) = \text{Opt}(D)\). Hence, following from the previous theorem, \((x^*, \lambda^*)\) is a saddle point of \(L(x, \lambda)\).

Remark Note that the sufficient condition holds for general constrained program, not necessarily convex ones. However, they are far from being necessary and hardly satisfied.

Definition 9.4 (Normal Cone) Let \(X \subset \mathbb{R}^n\) and \(x \in X\). The normal cone of \(X\), denoted as \(N_X(x)\), is the set

\[
N_X(x) = \{h \in \mathbb{R}^n : h^T(y - x) \geq 0, \forall y \in X\}
\]
Note that $N_X(x)$ is a closed convex cone.

Examples:

- $x \in \text{int}(X), N_X(x) = \emptyset$
- $x \in \text{rint}(X), N_X(x) = L^\perp$ where $L = \text{Linear subspace parallel to } \text{Aff}(X)$
- $X = \{ x : a_i^T x \geq b_i, i = 1, ..., m \}, x \notin \text{int}(X)$.

 $$N_X(x) = \text{Cone}(\{ a_i | a_i^T x = b_i \})$$

Theorem 9.5 Let (P) be a convex program and let x^* be a feasible solution. Assume $f, g_1, ..., g_m$ are differentiable at x^*.

(a) *(sufficient condition)* If there exists $\lambda^* \geq 0$ satisfying

1) $\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*) \in N_X(x^*)$

2) $\lambda^* g_i(x^*) = 0, \forall i = 1, ..., m$

then x^* is optimal solution to (P) *(Karush-Kuhn-Tucker, KKT condition (1951))*

(b) *(necessary condition)* If (P) also satisfies the slater condition. then the above condition is also necessary for x^* to be optimal.

Proof:

(a) *(sufficient part)* Under the KKT condition

1) implies that $L(x, \lambda^*) \geq L(x^*, \lambda^*), \forall x \in X$ because

$$L(x, \lambda^*) \geq L(x^*, \lambda^*) + \nabla_x L(x^*, \lambda^*)(x - x^*)$$

as the last part is non-negative

2) + feasibility of x^* implies $L(x^*, \lambda^*) \geq L(x^*, \lambda), \forall \lambda \geq 0$ because

$$L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*) = f(x^*) \geq f(x^*) + \sum \lambda_i g_i(x^*) = L(x^*, \lambda)$$

Hence (x^*, λ^*) is a saddle point of $L(x, \lambda)$.

(b) *(necessary part)* From previous theorem, there exists $\lambda \geq 0$ such that (x^*, λ^*) is a saddle point of $L(x, \lambda)$. We have

$$L(x, \lambda^*) \geq L(x^*, \lambda^*), \forall x \in X \implies (y - x^*)^T \nabla L(x^*, \lambda^*) = \lim_{\epsilon \to 0} \frac{L(x^* + \epsilon(y - x^*), \lambda^*) - L(x^*, \lambda^*)}{\epsilon} \geq 0$$

$$\implies \nabla_x L(x^*, \lambda^*) \in N_X(x^*)$$
L(x^*, \lambda^*) \geq L(x, \lambda), \forall \lambda \geq 0 \Rightarrow \sum_{i=1}^{m} \lambda^*_ig_i(x^*) \geq \sum_{i=1}^{m} \lambda_ig_i(x^*), \forall \lambda \geq 0 \Rightarrow \sum_{i=1}^{m} \lambda^*_ig_i(x^*) \geq 0 \quad \text{(note we also have } \lambda^*_ig_i(x^*) \leq 0)\Rightarrow \lambda^*_ig_i(x^*) = 0, \forall i

This leads to the KKT condition.

Remark To summarize, \((x^*, \lambda^*)\) is an optimal primal-dual pair if it satisfies:

- **Primal feasibility**: \(x^* \in X, g_i(x^*) \leq 0\)
- **Dual feasibility**: \(\lambda^* \geq 0\)
- **Lagrange optimality**: \(\nabla f(x^*) + \sum_{i=1}^{m} \lambda^*_i \nabla g_i(x^*) \in N_X(x^*)\)
- **Complementary slackness**: \(\lambda^*_ig_i(x^*) = 0, \forall i = 1, ..., m\)

Example: Given \(a_i > 0, i = 1, ..., n\), solve the problem

\[
\begin{align*}
\min_x & \quad \sum_{i=1}^{n} \frac{a_i}{x_i} \\
\text{s.t.} & \quad x > 0 \\
& \quad \sum_{i=1}^{n} x_i \leq 1
\end{align*}
\]

The Lagrange function \(L(x, \lambda) = \sum_{i=1}^{n} \frac{a_i}{x_i} + \lambda(\sum_{i=1}^{n} x_i - 1)\). The KKT optimality conditions yield

\[
\begin{cases}
x^*_i > 0, \sum_{i=1}^{n} x^*_i \leq 1 \\
\lambda^* \geq 0 \\
-\frac{a_i}{(x^*_i)^2} + \lambda^* = 0 \\
\lambda^*(\sum_{i=1}^{n} x^*_i - 1) = 0
\end{cases}
\Rightarrow x_i = \sqrt{\frac{a_i}{\lambda^*}} \quad \text{and} \quad \sum_{i=1}^{m} x_i = 1 \Rightarrow \begin{cases}
\lambda^* = \sum_{i=1}^{n} \sqrt{\frac{a_i}{\lambda}} \\
x^*_i = \frac{\sqrt{a_i}}{\sum_{i=1}^{m} \sqrt{a_i}}, i = 1, \ldots, m
\end{cases}
\]