
IE 521: Convex Optimization Spring 2017, UIUC

Lecture 8: Convex Programming – February 15

Instructor: Niao He Scribe: Shuanglong Wang

Courtesy warning: These notes do not necessarily cover everything discussed in the class. Please
email TA (swang157@illinois.edu) if you find any typos or mistakes.

In this lecture, we cover the following topics

• Basics of Convex Programs

• Convex Theorem on Alternatives

• Lagrange Duality

References: Ben-Tal & Nemirovski, Chapter 3.1-3.3

8.1 Basics of Convex Programs

The standard form of an optimization problem

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m (P )

hj(x) = 0, j = 1, ..., k

The optimal value of (P ) is

p∗ =

{
+∞, if no feasible solution

infx:gi(x)≤0,∀i,hj(x)=0 ∀j f(x), if exists feasible solution.

• (P ) is infeasible, if p∗ = +∞

• (P ) is unbounded below, if p∗ = −∞

• (P ) is solvable. if ∃ a feasible solution x∗, s.t. p∗ = f(x∗)

• (P ) is unattainable, if |p∗| <∞ but 6 ∃ feasible x∗, s.t. p∗ = f(x∗). For example, minx∈(0,1) e
x

Given a solution x∗,

• x∗ is a global optimum for (P ) if x∗ is feasible and f(x∗) ≤ f(x), ∀x feasible
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• x∗ is a local optimum for (P ) if x∗ is feasible and ∃r > 0, s.t. f(x∗) ≤ f(x), ∀ feasible x ∈
B(x∗, r)

Proposition 8.1 For convex programs, a local optimum is a global optimum.

Proof: Let C denote the feasible set, and x∗ be local optimum. We want to show that ∀x ∈
C, f(x∗) ≤ f(x). Let z = εx∗ + (1− ε)x. Then z ∈ C ∩B(x∗, r) when ε is small enough. Hence,

f(x∗) ≤ f(z) ≤ εf(x∗) + (1− ε)f(x)

Hence, f(x∗) ≤ f(x),∀x ∈ C.

Question: How to verify whether a solution x∗ is optimal?

In the linear program case, we have shown strong duality between (P ) & (D)

min cTx

(P ) s.t. Ax = b

x ≥ 0

max bT y

(D) s.t. AT y ≤ c

We know that

x∗ is optimal⇔Ax∗ = b, x ≥ 0 (primal feasibility )

∃y∗, AT y∗ ≤ c (dual feasibility)

cTx∗ = bT y∗ (zero-duality gap)

The strong duality is based on the Farkas’ Lemma (or separation theorem). As an analogy, we can
derive duality and optimality condition for general convex programs.

8.2 Convex Theorems on Alternatives

Consider the general form of convex program

min
x∈X

f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m (P )

where X is a convex set, f, g1, . . . , gm are convex functions.

Theorem 8.2 Assume g1, ..., gm satisfy the Slater condition: ∃x̄ ∈ X, s.t. gi(x̄) < 0. Then exactly
one of the following two systems must be empty.
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(I) {x ∈ X : f(x) < 0, gi(x) ≤ 0, i = 1, ...,m}

(II) {λ ∈ Rm : λ ≥ 0, infx∈X {f(x) +
∑m

i=1 λigi(x)} ≥ 0}

Proof:

1. We first show that system (II) feasible ⇒ system (I) infeasible.

Suppose (I) is also feasible, ∃x0, s.t. f(x0) < 0, gi(x0) ≤ 0. Then

∀λ ≥ 0, inf
x∈X

{
f(x) +

m∑
i=1

λigi(x)

}
< 0

Contradiction!

2. We then show that system (I) infeasible ⇒ system (II) feasible.

Consider the following two sets:

S =
{
u = (u0, u1, ..., um) ∈ Rm+1 : ∃x ∈ X, f(x) ≤ u0, g1(x) ≤ u1, ..., gm(x) ≤ um

}
T =

{
u = (u0, u1, ..., um) ∈ Rm+1 : u0 < 0, u1 ≤ 0, ..., um ≤ 0

}
Note that S is convex (why?) and nonempty, T is convex and nonempty and S ∩ T = ∅.
By separation theorem, ∃a = (a0, a1, ..., am) ∈ Rm+1 and a 6= 0, s.t.

sup
u∈T

aTu ≤ inf
u∈S

aTu

i.e. sup
u0<0,ui≤0,∀i=1,..,m

m∑
i=0

aiui ≤ inf
x,u0,...,um:u0≥f(x),ui≥gi(x),∀i=1,..,m

m∑
i=0

aiui

Observe a ≥ 0, hence:

0 ≤ inf
x
a0f(x) + a1g1(x) + ...+ amgm(x)

Note that a0 > 0, otherwise: we have (a1, ..., am) ≥ 0 and (a1, . . . , am) 6= 0,

inf
x
{a1g1(x) + ...+ amgm(x)} ≥ 0

However, ∃x̄, s.t. gi(x) < 0,∀i = 1, ...,m. This implies

inf
x∈X

a1g1(x) + ...+ amgm(x) < 0

Contradiction!
Hence, setting λi = ai

a0
, i = 1, ...,m. we have

λ ≥ 0 and inf
x

{
f(x) +

∑
λigi(x)

}
≥ 0

i.e. system (II) is feasible
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Remark (relaxed Slater condition): The Slater condition can be relaxed to accommodate for
linear equalities: ∃x ∈ rint(X) s.t. gi(x) < 0 for all i = {1, ...,m} such that gi(x) is not affine.

Note that in the general case,

x∗ is optimal to (P )⇔
{
{x ∈ X : f(x) ≤ f(x∗), gi(x) ≤ 0, i = 1, ...,m} is feasible
{x ∈ X : f(x) < f(x∗), gi(x) ≤ 0, i = 1, ...,m} is infeasible

⇔
{
{x ∈ X : f(x) ≤ f(x∗), gi(x) ≤ 0, i = 1, ...,m} is feasible
{λ ∈ Rm : λ ≥ 0, infx∈X {f(x) +

∑
λigi(x)} ≥ f(x∗)}is feasible

Observe that the function infx∈X {f(x) +
∑
λigi(x)} ≤ f(x∗) for any λ ≥ 0. Therefore, the

optimality of x∗ implies that there must exsit λ∗ ≥ 0 such that infx∈X {f(x) +
∑
λ∗i gi(x)} = f(x∗).

8.3 Lagrange Duality

Definition 8.3 The function L(x, λ) = f(x) +
∑m

i=1 λigi(x) is called the Lagrange function. This
induces two related functions:

L(λ) = inf
x∈X

L(x, λ)

L̄(x) = sup
λ≥0

L(x, λ)

The Lagrange dual of the problem

min f(x)

(P ) s.t. gi(x) ≤ 0, i = 1, ...,m

x ∈ X

is defined as

max L(λ)

(D) s.t. λ ≥ 0

Theorem 8.4 (Duality Theorem) Denote Opt(P ) and Opt(D) as the optimal values to (P ) and
(D), we have

(a) (Weak Duality) ∀λ ≥ 0, L(λ) ≤ Opt(D). Moreover, Opt(D) ≤ Opt(P ).

(b) (Strong Duality) If (P ) is convex and below bounded, and satisfies Slater condition, then (D)
is solvable, and

Opt(D) = Opt(P )

Proof:
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(a) If (P ) is infeasible, Opt(P ) =∞, Opt(D) ≤ Opt(P ) always hold.
If (P ) is feasible, let x0 be feasible solution, i.e. gi(x0) ≤ 0, x0 ∈ X

∀λ ≥ 0, L(λ) = inf
x∈X

{
f(x) +

∑
λigi(x)

}
≤ f(x0) + λigi(x0) ≤ f(x0)

Hence,

∀λ ≥ 0, L(λ) ≤ inf {f(x0) : x0 ∈ X, gi(x0) ≤ 0, i = 1, ...,m} = Opt(P )

Furthermore, Opt(D) = supλ≥0 L(λ) ≤ Opt(P )

(b) By optimality, we know that {x ∈ X : f(x) < Opt(P ), gi(x) ≤ 0, i = 1, ...,m} has no solution.
By convex theorem on alternative and Slater condition, the system {λ ≥ 0 : L(λ) ≥ Opt(P )}
has a solution. This implies that Opt(D) = supλ≥0 L(λ) ≥ Opt(P ). Combining with part (a),
we have Opt(P ) = Opt(D).

Example: The Slater condition does not hold in the following example.

min
x∈X

e−x

s.t.
x2

y
≤ 0

where X = {(x, y) : y > 0}. Note that there exists no solution in x ∈ X such that x2/y < 0.


