IE 521: Convex Optimization Spring 2017, UIUC

Lecture 3: Separation Theorems — January 30

Instructor: Niao He Scribe: Shuanglong Wang

Courtesy warning: These notes do not necessarily cover everything discussed in the class. Please
email TA (swangl57@illinois.edu) if you find any typos or mistakes.

In this lecture, we cover the following topics

e Separation Theorems
e The Farkas Lemma

e Duality of Linear Programs

Reference: Boyd & Vandenberghe, Chapter 2.5; Ben-Tal & Nemirovski, Chapter 1.2

3.1 Separation of Convex Sets

Definition 3.1 Let S and T be two nonempty convex sets in R™, A hyperplane H = {:L’ eR":alz = b}
with a # 0 is said to separate S and T if

a)SCH_:{;UER”:aTargb} andTCH*z{xER”:aTmZb}
b) SUT ¢ H

Note that a) implies that
sup a’z < inf a’x

zeS €T
and b) implies that

inf o’z < supa’z

TE€S zeT

The separation is strict if S C {x e R" 10’z <V} and T C {x e R" : a’x > "}, with ' < V.
Note that strict separation is equivalent to

supa’z < inf o’z
z€eS z€T

Question: When can S and T be separated? strictly separated? Necessary conditions?

Theorem 3.2 Let S and T be two nonempty convex sets. Then S and T can be separated if and
only if rint(S) N rint(T) = ()
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Corollary 3.3 Let S be a nonempty convex set and xro € 0S. Then there exists a supporting
hyperplane H = {l’ cale = CLT:L‘[)} such that S C {x calz < aT:EO} and xg € H.

We will prove a special case of the theorem and corollary.

Theorem 3.4 Let S be closed and conver and xqg € S, Then there exists a hyperplane that strictly
separated xo and S.

Proof: Define the projection of z¢, denoted as proj(zg) to be the point in S that is closest to zg:
proj(xzo) = argmin || z — zo [|3
z€eS
Note that proj(x) exists and is unique.

e Existence: due to closedness of S

e Uniqueness: If 21, 29 are both closest to zg in S, then || z1 — z¢ ||2=|| x2 —x¢ ||2= d. Consider
z =2t € G then || z—x ||> d. Since || (zo—z1)+(zo—22) |3 + || (zo—21) — (z0—22) [|3=
2 || wo — w1 ||3 +2 || w0 — @2 ||3. We have 4 || 29 — 2z ||3 + || 21 — 22 ||3= 4d?. Hence
| 21 —z2 |3=0, ie. 71 = z2.

Next we show that strict separation is given by H := {:1: cale = b} with @ = x¢ — proj(zo).
2
b=a"xy— %, ie. a’x <b,VreS, alzy > 0.

By definition of projection and convexity, VA € [0, 1],z € S,
Az + (1 — A)proj(zg) € S

Let ¢(A) =| Az + (1 — A)proj(zo) — o [|3= proj(zo) — zo + A(z — proj(zo)) |3
Then
P(A) > ¢(0),VA € [0, 1]

Hence, ¢'(0) > 0, i.e. —2a’(x — proj(xg)) > 0. This implies

ol
2

=b

alz < al'proj(zo) = a¥ (zg — a) = alzo— || a ||*< aTzo —

Corollary 3.5 Let S and T be two nonempty convex sets and SNT = (). Assume S —T 1is closed,
then S and T can be strictly separated.

Proof: Let Y =5 —T. Since Y is a weighted sum of two convex sets, Y is nonempty and convex.
Since SNT, 0 ¢ Y, from the precious theorem, Ja, b such that a’y < b < 0. This implies that

ale<b+a'z, VeeS zeT

Hence, sup,cg a’z <inf.era’z, i.e. S and T can be strictly separated. [ |
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Remark

1. Even if both S and T are closed convex, S — T might not be closed, and they might not be
strictly separated.

2. When both S and T are closed convex, S NT = () and at least one of them is bounded, then
S — T is closed, and S and T can be strictly separated

3.2 Theorems of alternatives

Theorem 3.6 (Farkas’ Lemma) Ezactly one of the following sets must be empty:

(i) {x e R": Ax = b,z > 0}
(it) {y e R™: ATy < 0,07y > 0}

where A € R™*"™ b € R™.

Remark

e System (i) and (i7) are often called strong alternative, i.e. exactly one of them must be
feasible.

e Farka’s Lemma is particularly useful to prove infeasibility of an linear program

e Geometric interpretation: let A = [a1|az]...|an],

n
Cone{ay,...,an} = {Z xia; s x; > 0,0 =1, ,n}
i=1

(1i)empty <= b & Cone{ay,...,a,} = EIy,yTai <0,Vi=1, ...,n,yTb >0

Farkas’ lemma can be regarded as a special case of the separation theorem.

Proof: First, we show that if system (ii) feasible, then system (i) infeasible. Otherwise, 0 < b7y =
(Az)Ty = 2T (ATy) < 0, contradiction!
Second, we show that if system (i) infeasible, then system (ii) feasible. Let C' = Cone{ay, ..., an},
then C is convex and closed. Now that b ¢ C| by the separation theorem, b and C' can be (strictly)
separated, i.e.

Jy e R™, v € R,y # 0, such that ,yTz <~,Vze C,yTb >~

Since 0 € C, we have v > 0. Suppose v > 0, and Jzg € C such that y’zy > 0, then we have
y"(azp) > v when « is large enough. Hence, it suffices to set v = 0. Since ay, .., a, € C, we have
yla; <0,Vi=1,..,m, ie. ATy <0. [ |

Remark: The fact that Cone {ay,...a,,} is closed is crucial. Note that in general, when S is not
a finite set, Cone(S) is not always closed. e.g. the conic hull of a solid circle S = {(z1,x2) :
22 + (x5 — 1)2 < 1} is the open halfspace {(x1,22) : 79 > 0}.
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Variant of Farkas’ Lemma Exactly one of the following two sets must be empty:

1. {x e R": Az < b}

2. {y>0: ATy =0,0Ty <0}

Proof: Exercise in HW1. [ ]

3.3 LP strong duality

Consider the primal and dual pair of linear programs

T

min ¢ x max by
(P) st Ar=b (D) st. ATy <c
x>0

Theorem 3.7 If (P) has a finite optimal value, then so does (D) and the two values equal each
other.

Proof: Exercise in HW 1. ]

Remark The theorem of alternatives can be generalized to systems with convex constraints, and
the strong duality of linear program can be extended to general convex programs.



