IE 521: Convex Optimization

Spring 2017, UIUC

Lecture 3: Separation Theorems – January 30

Instructor: Niao He Scribe: Shuanglong Wang

Courtesy warning: These notes do not necessarily cover everything discussed in the class. Please email TA (swang157@illinois.edu) if you find any typos or mistakes.

In this lecture, we cover the following topics

- Separation Theorems
- The Farkas Lemma
- Duality of Linear Programs

Reference: Boyd & Vandenberghe, Chapter 2.5; Ben-Tal & Nemirovski, Chapter 1.2

3.1 Separation of Convex Sets

Definition 3.1 Let S and T be two nonempty convex sets in \mathbb{R}^n , A hyperplane $H = \{x \in \mathbb{R}^n : a^Tx = b\}$ with $a \neq 0$ is said to separate S and T if

a)
$$S \subset H^- = \left\{ x \in \mathbf{R}^n : a^T x \le b \right\}$$
 and $T \subset H^+ = \left\{ x \in \mathbf{R}^n : a^T x \ge b \right\}$

b) $S \cup T \not\subset H$

Note that a) implies that

$$\sup_{x \in S} a^T x \le \inf_{x \in T} a^T x$$

and b) implies that

$$\inf_{x \in S} a^T x < \sup_{x \in T} a^T x$$

The separation is <u>strict</u> if $S \subset \{x \in \mathbf{R}^n : a^Tx \leq b'\}$ and $T \subset \{x \in \mathbf{R}^n : a^Tx \geq b''\}$, with b' < b''. Note that strict separation is equivalent to

$$\sup_{x \in S} a^T x < \inf_{x \in T} a^T x$$

Question: When can S and T be separated? strictly separated? Necessary conditions?

Theorem 3.2 Let S and T be two nonempty convex sets. Then S and T can be separated if and only if $rint(S) \cap rint(T) = \emptyset$

Corollary 3.3 Let S be a nonempty convex set and $x_0 \in \partial S$. Then there exists a supporting hyperplane $H = \{x : a^T x = a^T x_0\}$ such that $S \subset \{x : a^T x \leq a^T x_0\}$ and $x_0 \in H$.

We will prove a special case of the theorem and corollary.

Theorem 3.4 Let S be closed and convex and $x_0 \notin S$, Then there exists a hyperplane that strictly separated x_0 and S.

Proof: Define the projection of x_0 , denoted as $\operatorname{proj}(x_0)$ to be the point in S that is closest to x_0 :

$$\operatorname{proj}(x_0) = \arg\min_{x \in S} ||x - x_0||_2^2$$

Note that $proj(x_0)$ exists and is unique.

- \bullet Existence: due to closedness of S
- Uniqueness: If x_1 , x_2 are both closest to x_0 in S, then $||x_1-x_0||_2=||x_2-x_0||_2=d$. Consider $z=\frac{x_1+x_2}{2}\in S$, then $||z-x_0||\geq d$. Since $||(x_0-x_1)+(x_0-x_2)||_2^2+||(x_0-x_1)-(x_0-x_2)||_2^2=2||x_0-x_1||_2^2+2||x_0-x_2||_2^2$. We have $4||x_0-z||_2^2+||x_1-x_2||_2^2=4d^2$. Hence $||x_1-x_2||_2^2=0$, i.e. $x_1=x_2$.

Next we show that strict separation is given by $H := \{x : a^T x = b\}$ with $a = x_0 - \text{proj}(x_0)$. $b = a^T x_0 - \frac{\|a\|_2^2}{2}$, i.e. $a^T x < b$, $\forall x \in S$, $a^T x_0 > b$. By definition of projection and convexity, $\forall \lambda \in [0, 1], x \in S$,

$$\lambda x + (1 - \lambda)\operatorname{proj}(x_0) \in S$$

Let $\phi(\lambda) = \|\lambda x + (1 - \lambda)\operatorname{proj}(x_0) - x_0\|_2^2 = \|\operatorname{proj}(x_0) - x_0 + \lambda(x - \operatorname{proj}(x_0))\|_2^2$ Then

$$\phi(\lambda) \ge \phi(0), \forall \lambda \in [0, 1]$$

Hence, $\phi'(0) \ge 0$, i.e. $-2a^T(x - \operatorname{proj}(x_0)) \ge 0$. This implies

$$a^{T}x \le a^{T}\operatorname{proj}(x_{0}) = a^{T}(x_{0} - a) = a^{T}x_{0} - ||a||^{2} < a^{T}x_{0} - \frac{||a||^{2}}{2} = b$$

Corollary 3.5 Let S and T be two nonempty convex sets and $S \cap T = \emptyset$. Assume S - T is closed, then S and T can be strictly separated.

Proof: Let Y = S - T. Since Y is a weighted sum of two convex sets, Y is nonempty and convex. Since $S \cap T$, $0 \notin Y$, from the precious theorem, $\exists a, b$ such that $a^T y < b < 0$. This implies that

$$a^T x < b + a^T z$$
, $\forall x \in S, z \in T$

Hence, $\sup_{x \in S} a^T x < \inf_{z \in T} a^T z$, i.e. S and T can be strictly separated.

Remark

- 1. Even if both S and T are closed convex, S-T might not be closed, and they might not be strictly separated.
- 2. When both S and T are closed convex, $S \cap T = \emptyset$ and at least one of them is bounded, then S T is closed, and S and T can be strictly separated

3.2 Theorems of alternatives

Theorem 3.6 (Farkas' Lemma) Exactly one of the following sets must be empty:

- (i) $\{x \in \mathbf{R}^n : Ax = b, x \ge 0\}$
- (ii) $\{y \in \mathbf{R}^m : A^T y \le 0, b^T y > 0\}$

where $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$.

Remark

- System (i) and (ii) are often called strong alternative, i.e. exactly one of them must be feasible.
- Farka's Lemma is particularly useful to prove infeasibility of an linear program
- Geometric interpretation: let $A = [a_1|a_2|...|a_n],$

Cone
$$\{a_1, ..., a_n\} = \left\{ \sum_{i=1}^n x_i a_i : x_i \ge 0, i = 1, ..., n \right\}$$

(ii) empty
$$\iff b \notin \text{Cone } \{a_1, ..., a_n\} \Longrightarrow \exists y, y^T a_i \leq 0, \forall i = 1, ..., n, y^T b > 0$$

Farkas' lemma can be regarded as a special case of the separation theorem.

Proof: First, we show that if system (ii) feasible, then system (i) infeasible. Otherwise, $0 < b^T y = (Ax)^T y = x^T (A^T y) \le 0$, contradiction!

Second, we show that if system (i) infeasible, then system (ii) feasible. Let $C = \text{Cone } \{a_1, ..., a_n\}$, then C is convex and closed. Now that $b \notin C$, by the separation theorem, b and C can be (strictly) separated, i.e.

$$\exists y \in \mathbf{R}^m, \gamma \in \mathbf{R}, y \neq 0, \text{ such that }, y^Tz \leq \gamma, \forall z \in C, y^Tb > \gamma$$

Since $0 \in C$, we have $\gamma \geq 0$. Suppose $\gamma > 0$, and $\exists z_0 \in C$ such that $y^T z_0 > 0$, then we have $y^T(\alpha z_0) > \gamma$ when α is large enough. Hence, it suffices to set $\gamma = 0$. Since $a_1, ..., a_n \in C$, we have $y^T a_i \leq 0$, $\forall i = 1, ..., m$, i.e. $A^T y \leq 0$.

Remark: The fact that Cone $\{a_1, ... a_m\}$ is closed is crucial. Note that in general, when S is not a finite set, Cone(S) is not always closed. e.g. the conic hull of a solid circle $S = \{(x_1, x_2) : x_1^2 + (x_2 - 1)^2 < 1\}$ is the open halfspace $\{(x_1, x_2) : x_2 > 0\}$.

Variant of Farkas' Lemma Exactly one of the following two sets must be empty:

- 1. $\{x \in \mathbf{R}^n : Ax \le b\}$
- 2. $\{y \ge 0 : A^T y = 0, b^T y < 0\}$

Proof: Exercise in HW1.

3.3 LP strong duality

Consider the primal and dual pair of linear programs

Theorem 3.7 If (P) has a finite optimal value, then so does (D) and the two values equal each other.

Proof: Exercise in HW 1.

Remark The theorem of alternatives can be generalized to systems with convex constraints, and the strong duality of linear program can be extended to general convex programs.