
IE 521: Convex Optimization Spring 2017, UIUC

Lecture 3: Separation Theorems – January 30

Instructor: Niao He Scribe: Shuanglong Wang

Courtesy warning: These notes do not necessarily cover everything discussed in the class. Please
email TA (swang157@illinois.edu) if you find any typos or mistakes.

In this lecture, we cover the following topics

• Separation Theorems

• The Farkas Lemma

• Duality of Linear Programs

Reference: Boyd & Vandenberghe, Chapter 2.5; Ben-Tal & Nemirovski, Chapter 1.2

3.1 Separation of Convex Sets

Definition 3.1 Let S and T be two nonempty convex sets in Rn, A hyperplane H =
{
x ∈ Rn : aTx = b

}
with a 6= 0 is said to separate S and T if

a) S ⊂ H− =
{
x ∈ Rn : aTx ≤ b

}
and T ⊂ H+ =

{
x ∈ Rn : aTx ≥ b

}
b) S ∪ T 6⊂ H

Note that a) implies that
sup
x∈S

aTx ≤ inf
x∈T

aTx

and b) implies that
inf
x∈S

aTx < sup
x∈T

aTx

The separation is strict if S ⊂
{
x ∈ Rn : aTx ≤ b′

}
and T ⊂

{
x ∈ Rn : aTx ≥ b′′

}
, with b′ < b′′.

Note that strict separation is equivalent to

sup
x∈S

aTx < inf
x∈T

aTx

Question: When can S and T be separated? strictly separated? Necessary conditions?

Theorem 3.2 Let S and T be two nonempty convex sets. Then S and T can be separated if and
only if rint(S) ∩ rint(T ) = ∅
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Corollary 3.3 Let S be a nonempty convex set and x0 ∈ ∂S. Then there exists a supporting
hyperplane H =

{
x : aTx = aTx0

}
such that S ⊂

{
x : aTx ≤ aTx0

}
and x0 ∈ H.

We will prove a special case of the theorem and corollary.

Theorem 3.4 Let S be closed and convex and x0 6∈ S, Then there exists a hyperplane that strictly
separated x0 and S.

Proof: Define the projection of x0, denoted as proj(x0) to be the point in S that is closest to x0:

proj(x0) = arg min
x∈S
‖ x− x0 ‖22

Note that proj(x0) exists and is unique.

• Existence: due to closedness of S

• Uniqueness: If x1, x2 are both closest to x0 in S, then ‖ x1−x0 ‖2=‖ x2−x0 ‖2= d. Consider
z = x1+x2

2 ∈ S, then ‖ z−x0 ‖≥ d. Since ‖ (x0−x1)+(x0−x2) ‖22 + ‖ (x0−x1)−(x0−x2) ‖22=
2 ‖ x0 − x1 ‖22 +2 ‖ x0 − x2 ‖22. We have 4 ‖ x0 − z ‖22 + ‖ x1 − x2 ‖22= 4d2. Hence
‖ x1 − x2 ‖22= 0, i.e. x1 = x2.

Next we show that strict separation is given by H :=
{
x : aTx = b

}
with a = x0 − proj(x0).

b = aTx0 −
‖a‖22
2 , i.e. aTx < b, ∀x ∈ S, aTx0 > b.

By definition of projection and convexity, ∀λ ∈ [0, 1], x ∈ S,

λx+ (1− λ)proj(x0) ∈ S

Let φ(λ) =‖ λx+ (1− λ)proj(x0)− x0 ‖22=‖ proj(x0)− x0 + λ(x− proj(x0)) ‖22
Then

φ(λ) ≥ φ(0),∀λ ∈ [0, 1]

Hence, φ′(0) ≥ 0, i.e. −2aT (x− proj(x0)) ≥ 0. This implies

aTx ≤ aTproj(x0) = aT (x0 − a) = aTx0− ‖ a ‖2< aTx0 −
‖ a ‖2

2
= b

Corollary 3.5 Let S and T be two nonempty convex sets and S ∩T = ∅. Assume S−T is closed,
then S and T can be strictly separated.

Proof: Let Y = S − T . Since Y is a weighted sum of two convex sets, Y is nonempty and convex.
Since S ∩ T , 0 6∈ Y , from the precious theorem, ∃a, b such that aT y < b < 0. This implies that

aTx < b+ aT z, ∀x ∈ S, z ∈ T

Hence, supx∈S a
Tx < infz∈T a

T z, i.e. S and T can be strictly separated.
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Remark

1. Even if both S and T are closed convex, S − T might not be closed, and they might not be
strictly separated.

2. When both S and T are closed convex, S ∩ T = ∅ and at least one of them is bounded, then
S − T is closed, and S and T can be strictly separated

3.2 Theorems of alternatives

Theorem 3.6 (Farkas’ Lemma) Exactly one of the following sets must be empty:

(i) {x ∈ Rn : Ax = b, x ≥ 0}

(ii)
{
y ∈ Rm : AT y ≤ 0, bT y > 0

}
where A ∈ Rm×n, b ∈ Rm.

Remark

• System (i) and (ii) are often called strong alternative, i.e. exactly one of them must be
feasible.

• Farka’s Lemma is particularly useful to prove infeasibility of an linear program

• Geometric interpretation: let A = [a1|a2|...|an],

Cone {a1, ..., an} =

{
n∑

i=1

xiai : xi ≥ 0, i = 1, ..., n

}

(ii)empty⇐⇒ b 6∈ Cone {a1, ..., an} =⇒ ∃y, yTai ≤ 0,∀i = 1, ..., n, yT b > 0

Farkas’ lemma can be regarded as a special case of the separation theorem.

Proof: First, we show that if system (ii) feasible, then system (i) infeasible. Otherwise, 0 < bT y =
(Ax)T y = xT (AT y) ≤ 0, contradiction!
Second, we show that if system (i) infeasible, then system (ii) feasible. Let C = Cone {a1, ..., an},
then C is convex and closed. Now that b /∈ C, by the separation theorem, b and C can be (strictly)
separated, i.e.

∃y ∈ Rm, γ ∈ R, y 6= 0, such that , yT z ≤ γ,∀z ∈ C, yT b > γ

Since 0 ∈ C, we have γ ≥ 0. Suppose γ > 0, and ∃z0 ∈ C such that yT z0 > 0, then we have
yT (αz0) > γ when α is large enough. Hence, it suffices to set γ = 0. Since a1, .., an ∈ C, we have
yTai ≤ 0, ∀i = 1, ...,m, i.e. AT y ≤ 0.

Remark: The fact that Cone {a1, ...am} is closed is crucial. Note that in general, when S is not
a finite set, Cone(S) is not always closed. e.g. the conic hull of a solid circle S = {(x1, x2) :
x21 + (x2 − 1)2 < 1} is the open halfspace {(x1, x2) : x2 > 0}.
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Variant of Farkas’ Lemma Exactly one of the following two sets must be empty:

1. {x ∈ Rn : Ax ≤ b}

2.
{
y ≥ 0 : AT y = 0, bT y < 0

}
Proof: Exercise in HW1.

3.3 LP strong duality

Consider the primal and dual pair of linear programs

min cTx

(P ) s.t. Ax = b

x ≥ 0

max bT y

(D) s.t. AT y ≤ c

Theorem 3.7 If (P ) has a finite optimal value, then so does (D) and the two values equal each
other.

Proof: Exercise in HW 1.

Remark The theorem of alternatives can be generalized to systems with convex constraints, and
the strong duality of linear program can be extended to general convex programs.


