Lecture 23: CVX Tutorial

April 19, 2017

(Slides Origin: Boyd & Vandenberghe)
Cone program solvers

• LP solvers
 – many, open source and commercial

• cone solvers
 – each handles combinations of a subset of LP, SOCP, SDP, EXP cones
 – open source: SDPT3, SeDuMi, CVXOPT, CSDP, ECOS, SCS, . . .
 – commercial: Mosek, Gurobi, Cplex, . . .
Transforming problems to cone form

- lots of tricks for transforming a problem into an equivalent cone program
 - introducing slack variables
 - introducing new variables that upper bound expressions

- these tricks greatly extend the applicability of cone solvers

- writing code to carry out this transformation is painful

- **modeling systems** automate this step
Modeling systems

a typical modeling system

- automates transformation to cone form; supports
 - declaring optimization variables
 - describing the objective function
 - describing the constraints
 - choosing (and configuring) the solver

- when given a problem instance, calls the solver

- interprets and returns the solver’s status (optimal, infeasible, . . .)

- (when solved) transforms the solution back to original form
Some current modeling systems

• AMPL & GAMS (proprietary)
 – developed in the 1980s, still widely used in traditional OR
 – no support for convex optimization
• YALMIP (‘Yet Another LMI Parser’, matlab)
 – first object-oriented convex optimization modeling system
• CVX (matlab)
• CVXPY (python, GPL)
• Convex.jl (Julia, GPL, merging into JUMP)
• CVX, CVXPY, and Convex.jl collectively referred to as CVX*
Disciplined convex programming

- describe objective and constraints using expressions formed from
 - a set of basic atoms (affine, convex, concave functions)
 - a restricted set of operations or rules (that preserve convexity)

- modeling system keeps track of affine, convex, concave expressions

- rules ensure that
 - expressions recognized as convex are convex
 - but, some convex expressions are not recognized as convex

- problems described using DCP are convex by construction

- all convex optimization modeling systems use DCP
CVX

• uses DCP
• runs in Matlab, between the `cvx_begin` and `cvx_end` commands
• relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers
• refer to user guide, online help for more info
• the CVX example library has more than a hundred examples
Example: Constrained norm minimization

\[
A = \text{randn}(5, 3);
b = \text{randn}(5, 1);
\]

\[
\begin{align*}
cvx_\text{begin} \\
& \quad \text{variable } x(3); \\
& \quad \text{minimize}(\text{norm}(A \times x - b, 1)) \\
& \quad \text{subject to} \\
& \quad \quad -0.5 \leq x; \\
& \quad \quad x \leq 0.3; \\
\end{align*}
\]

\[
\begin{align*}
\min_{x} & \quad \|Ax - b\|_1 \\
\text{s.t.} & \quad -0.5 \leq x \leq 0.3
\end{align*}
\]

• between `cvx_begin` and `cvx_end`, \(x \) is a CVX variable
• statement `subject to` does nothing, but can be added for readability
• inequalities are interpreted elementwise
What CVX does

after `cvx_end`, CVX

- transforms problem into an LP
- calls solver SDPT3
- overwrites (object) x with (numeric) optimal value
- assigns problem optimal value to `cvx_optval`
- assigns problem status (which here is `Solved`) to `cvx_status`

(had problem been infeasible, `cvx_status` would be `Infeasible` and x would be `NaN`
Declare variables

• declare variables with variable name[(dims)] [attributes]
 – variable x(3);
 – variable C(4,3);
 – variable S(3,3) symmetric;
 – variable D(3,3) diagonal;
 – variables y z;
Affine expressions

- form affine expressions

 \[
 A = \text{randn}(4, 3);
 \]

 \[
 \text{variables } x(3) \ y(4);
 \]

- $3x + 4$
- $Ax - y$
- $x(2:3)$
- $\text{sum}(x)$
Some functions

<table>
<thead>
<tr>
<th>function</th>
<th>meaning</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm(x, p)</td>
<td>(|x|_p)</td>
<td>cvx</td>
</tr>
<tr>
<td>square(x)</td>
<td>(x^2)</td>
<td>cvx</td>
</tr>
<tr>
<td>square_pos(x)</td>
<td>((x_+)^2)</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>pos(x)</td>
<td>(x_+)</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sum_largest(x,k)</td>
<td>(x[1] + \cdots + x[k])</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>(\sqrt{x}) (x \geq 0)</td>
<td>ccv, nondecr</td>
</tr>
<tr>
<td>inv_pos(x)</td>
<td>(1/x) (x > 0)</td>
<td>cvx, nonincr</td>
</tr>
<tr>
<td>max(x)</td>
<td>(\max{x_1, \ldots, x_n})</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>quad_over_lin(x,y)</td>
<td>(x^2/y) (y > 0)</td>
<td>cvx, nonincr in y</td>
</tr>
<tr>
<td>lambda_max(X)</td>
<td>(\lambda_{\text{max}}(X)) ((X = X^T))</td>
<td>cvx</td>
</tr>
</tbody>
</table>
| huber(x) | \[
\begin{align*}
 x^2, & \quad |x| \leq 1 \\
 2|x| - 1, & \quad |x| > 1
\end{align*}
\] | cvx |
Composition rules

• can combine atoms using valid composition rules, e.g.:
 - a convex function of an affine function is convex
 - the negative of a convex function is concave
 - a convex, nondecreasing function of a convex function is convex
 - a concave, nondecreasing function of a concave function is concave

• for convex h, $h(g_1, \ldots, g_k)$ is recognized as convex if, for each i,
 - g_i is affine, or
 - g_i is convex and h is nondecreasing in its ith arg, or
 - g_i is concave and h is nonincreasing in its ith arg

• for concave h, $h(g_1, \ldots, g_k)$ is recognized as concave if, for each i,
 - g_i is affine, or
 - g_i is convex and h is nonincreasing in ith arg, or
 - g_i is concave and h is nondecreasing in ith arg
Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3×3 variable

- **convex:**
 - $\text{norm}(A\mathbf{x} - \mathbf{y}) + 0.1\text{norm}(\mathbf{x}, 1)$
 - $\text{quad_over_lin}(u - v, 1 - \text{square}(v))$
 - $\lambda_{\max}(2\mathbf{X} - 4\text{eye}(3))$
 - $\text{norm}(2\mathbf{X} - 3, \text{’fro’})$

- **concave:**
 - $\min(1 + 2u, 1 - \max(2, v))$
 - $\sqrt{v} - 4.55\text{inv_pos}(u - v)$
Rejected examples

u, v, x, y are scalar variables

• neither convex nor concave:
 – \text{square}(x) - \text{square}(y)
 – \text{norm}(A\times x - y) - 0.1\times \text{norm}(x, 1)

• rejected due to limited DCP ruleset:
 – \text{sqrt} (\text{sum} (\text{square}(x))) (is convex; could use \text{norm}(x))
 – \text{square}(1 + x^2) (is convex; could use \text{square}_pos(1 + x^2), or
 1 + 2\times \text{pow}_pos(x, 2) + \text{pow}_pos(x, 4))
Sets

• some constraints are more naturally expressed with convex sets

• sets in CVX work by creating unnamed variables constrained to the set

• examples:
 – semidefinite(n)
 – nonnegative(n)
 – simplex(n)
 – lorentz(n)

• semidefinite(n), say, returns an unnamed (symmetric matrix) variable that is constrained to be positive semidefinite
Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar)

constants: A and B (matrices)

- $X == \text{semidefinite}(n)$
 - means $X \in S^n_+$ (or $X \succeq 0$)

- $A*X*A' - X == B*\text{semidefinite}(n)*B'$
 - means $\exists Z \succeq 0$ so that $AXA^T - X = BZB^T$

- $[X z; z' t] == \text{semidefinite}(n+1)$
 - means $\begin{bmatrix} X & z \\ z^T & t \end{bmatrix} \succeq 0$
Objectives and constraints

- **objective** can be
 - minimize(convex expression)
 - maximize(concave expression)
 - omitted (feasibility problem)

- **constraints** can be
 - convex expression <= concave expression
 - concave expression >= convex expression
 - affine expression == affine expression
 - omitted (unconstrained problem)
More involved example

A = randn(5);
A = A'*A;

```cvx
cvx_begin
    variable X(5, 5) symmetric;
    variable y;
    minimize(norm(X) - 10*sqrt(y))
    subject to
        X - A == semidefinite(5);
        X(2,5) == 2*y;
        X(3,1) >= 0.8;
        y <= 4;

cvx_end
```
Defining new functions

- can make a new function using existing atoms

example: the convex deadzone function

\[
f(x) = \max\{|x| - 1, 0\} = \begin{cases}
0, & |x| \leq 1 \\
x - 1, & x > 1 \\
1 - x, & x < -1
\end{cases}
\]

- create a file `deadzone.m` with the code

  ```matlab
  function y = deadzone(x)
  y = max(abs(x) - 1, 0)
  end
  ```

- deadzone makes sense both within and outside of CVX
Defining functions via incompletely specified problems

• suppose \(f_0, \ldots, f_m \) are convex in \((x, z)\)

• let \(\phi(x) \) be optimal value of convex problem, with variable \(z \) and parameter \(x \)

\[
\begin{align*}
\text{minimize} & \quad f_0(x, z) \\
\text{subject to} & \quad f_i(x, z) \leq 0, \quad i = 1, \ldots, m \\
& \quad A_1 x + A_2 z = b
\end{align*}
\]

• \(\phi \) is a convex function

• problem above sometimes called *incompletely specified* since \(x \) isn’t (yet) given

• an incompletely specified concave maximization problem defines a concave function
CVX functions via incompletely specified problems

implement in cvx with
function cvx_optval = phi(x)
cvx_begin
 variable z;
 minimize(f0(x, z))
 subject to
 f1(x, z) <= 0; ...
 A1*x + A2*z == b;

end

• function \phi will work for numeric \(x \) (by solving the problem)

• function \phi can also be used inside a CVX specification, wherever a convex function can be used
Simple example: Two element max

- create file max2.m containing

```
function cvx_optval = max2(x, y)
    cvx_begin
        variable t;
        minimize(t)
        subject to
            x <= t;
            y <= t;
    cvx_end
```

- the constraints define the epigraph of the max function
- could add logic to return \(\max(x, y) \) when \(x, y \) are numeric
 (otherwise, an LP is solved to evaluate the max of two numbers!)
A more complex example

• $f(x) = x + x^{1.5} + x^{2.5}$, with $\text{dom } f = \mathbb{R}_+$, is a convex, monotone increasing function

• its inverse $g = f^{-1}$ is concave, monotone increasing, with $\text{dom } g = \mathbb{R}_+$

• there is no closed form expression for g

• $g(y)$ is optimal value of problem

\[
\begin{align*}
\text{maximize} & \quad t \\
\text{subject to} & \quad t_+ + t_+^{1.5} + t_+^{2.5} \leq y
\end{align*}
\]

(for $y < 0$, this problem is infeasible, so optimal value is $-\infty$)
• implement as
 function cvx_optval = g(y)
 cvx_begin
 variable t;
 maximize(t)
 subject to
 pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
 cvx_end

• use it as an ordinary function, as in g(14.3), or within CVX as a concave function:
 cvx_begin
 variables x y;
 minimize(quad_over_lin(x, y) + 4*x + 5*y)
 subject to
 g(x) + 2*g(y) >= 2;
 cvx_end
Example

- optimal value of LP

\[f(c) = \inf \{ c^T x \mid Ax \preceq b \} \]

is concave function of \(c \)

- by duality (assuming feasibility of \(Ax \preceq b \)) we have

\[f(c) = \sup \{ -\lambda^T b \mid A^T \lambda + c = 0, \lambda \succeq 0 \} \]
• define f in CVX as

```matlab
function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
    variable lambda(length(b));
    maximize(-lambda'*b);
    subject to
        A'*lambda + c == 0; lambda >= 0;
    cvx_end
```

• in `lp_opt_val(A,b,c)` A, b must be constant; c can be affine
CVX hints/warnings

• watch out for = (assignment) versus == (equality constraint)

• \(X \geq 0 \), with matrix \(X \), is an elementwise inequality

• \(X \geq \text{semidefinite}(n) \) means: \(X \) is elementwise larger than some positive semidefinite matrix (which is likely not what you want)

• writing subject to is unnecessary (but can look nicer)

• many problems traditionally stated using convex quadratic forms can posed as norm problems (which can have better numerical properties):
 \(x'Px \leq 1 \) can be replaced with \(\text{norm}(\text{chol}(P)x) \leq 1 \)
Useful Resources

• http://cvxr.com/cvx/