In this lecture, we cover the following topics

- Revisit barrier method
- Self-concordant barrier
- Restate path-following scheme

Reference: Nesterov, Introductory Lectures on Convex Optimization, 2004, Chapter 4.2

21.1 Revisit Barrier Method

Recall the barrier method solves the general convex problem

\[
\min_{x \in X} f(x), \quad \text{where } X = \{x : g_i(x) \leq 0, i = 1, ..., m\}
\]

by solving a sequence of unconstrained minimization: \(\min_x tf(x) + F(x) \), where \(F(x) \) is barrier function defined on \(\text{int}(X) \), and \(t > 0 \) is penalty parameter.

Without loss of generality, let us consider problem of the form,

\[
\min_{x \in X} c^T x
\]

where \(X \) is a closed bounded convex set with non-empty interior. Let \(F \) be standard self-concordant with \(\text{cl}(\text{dom}(F)) = X \). We want to solve (P) by tracing the central path

\[
x^*(t) = \arg \min_x \underbrace{tc^T x + F(x)}_{F_t(x)}
\]

By optimality condition: \(\forall t > 0 \),

\[
tc + \nabla F(x^*(t)) = 0
\]

Note that \(F_t(x) \) is standard self-concordant and (damped) Newton method achieves a local convergence when \(\lambda_{F_t}(x) \leq \frac{1}{4} \).
When increasing $t \to t'$, we would want to preserve $\lambda_{F_t}(x^*(t)) \leq \frac{1}{4}$ and make t' as large as possible. We have

$$
\lambda_{F_t}(x^*(t)) = \| \nabla F_t(x^*(t)) \|_{x^*(t),*} \\
= \| (t' - t)c + tc + \nabla F(x^*(t)) \|_{x^*(t),*} \\
= \| (t' - t)c \|_{x^*(t),*} \\
= \| (\frac{t'}{t} - 1)\nabla F(x^*(t)) \|_{x^*(t),*}
$$

Hence,

$$
t' = 1 + \frac{1}{4\lambda_{F_t}(x^*(t))}
$$

To ensure $t \to +\infty$, need $\lambda_F(x)$ to be uniformly bounded from above, namely,

$$
\lambda_{F_t}^2(x) = \nabla F(x)^T[\nabla^2 F(x)]^{-1}\nabla F(x) \leq \nu
$$

for some ν. This leads to the definition of self-concordant barriers.

21.2 Self-concordant Barriers

21.2.1 Definition and Examples

Definition 21.1 Let $\nu \geq 0$. We call F a ν-self-concordant barrier (v-s.c.b.) for set $X = \text{cl}(\text{dom}(F))$ if F is standard self-concordant and satisfies

$$
|DF(x)[h]| \leq \nu^{1/2} \sqrt{D^2 F(x)[h,h]} \quad \forall x \in \text{dom}(F), h \in \mathbb{R}^n
$$

Remark

1. The inequality (*) implies that $|\nabla F(x)^T h| \leq \nu \| h \|_x^2$, i.e. F is Lipschitz continuous, w.r.t. the local norm defined by F.

2. When F is non-degenerate, (*) is equivalent to

$$
\lambda_{F_t}^2(x) = \nabla F(x)^T[\nabla^2 F(x)]^{-1}\nabla F(x) \leq \nu
$$

3. The following are equivalent:

$$
(*) \iff \nabla^2 F(x) \succ \frac{1}{\nu}\nabla F(x)[\nabla F(x)]^T
$$

Examples

- Constant function: $f(x) = c$ is 0-s.c.b.
• Linear function: $f(x) = a^T x + c (a \neq 0)$, is not s.c.b.

• Quadratic function: $f(x) = \frac{1}{2} x^T Q x + q^T x + c \; Q > 0$ is not s.c.b.

• Logarithmic function: $f(x) = -\ln x \; (x > 0)$ is 1-s.c.b.

\[
\frac{(f'(x))^2}{f''(x)} = \left(-\frac{1}{x}\right)^2 x^2 = 1
\]

21.2.2 Self-concordance Preserving Operators

Proposition 21.2 The following are true:

1. If $F(x)$ is a ν-self-concordant barrier, then $\tilde{F}(y) = F(Ay + b)$ is a ν-self-concordant barrier.

2. If $F_i(x)$ is ν_i-self-concordant barrier, $i = 1, 2$, then $F_1(x) + F_2(x)$ is $(\nu_1 + \nu_2)$-self-concordant barrier.

3. If $F(x)$ is a ν-self-concordant barrier, then $\beta F(x)$ with $\beta \geq 1$ is a $(\beta \nu)$-self-concordant barrier.

Example: The function

$$F(x) = -\sum_{i=1}^{m} \ln(b_i - a_i^T x)$$

is m-self-concordant barrier for the set $\{x : Ax \leq b\}$

Remark: Indeed, for any closed convex set $X \subseteq \mathbb{R}^n$ with non-empty interior, there exists a (βn)-self-concordant barrier for X.

21.2.3 Properties of Self-concordant Barriers

Lemma 21.3 *(Boundedness)* Let f be a ν-self-concordant barrier for X. Then for any $x \in \text{int}(X), y \in X$, we have $\langle \nabla F(x), y - x \rangle \leq \nu$

Proof is omitted and can be found in Theorem 4.2.4. in (Nesterov, 2004).

Theorem 21.4 For any $t > 0$, we have

$$c^T x^*(t) - \min_{x \in X} c^T x \leq \frac{\nu}{t}$$

Proof:

$$c^T x^*(t) - c^T y = -t^{-1} \nabla F(x^*(t))^T (x^*(t) - y) \leq \frac{\nu}{t}$$
21.3 Restate Path-following Scheme

We would like to address the convex problem
\[
\min_{x \in X} c^T x
\]
by tracing the central path
\[
x^*(t) = \arg \min_x \{ F_t(x) := tc^T x + F(x) \}
\]
where \(F(x) \) is a \(\nu \)-self-concordant barrier for \(X = cl(dom(F)) \).

Theorem 21.5 For any \(t > 0 \), we have
\[
c^T x^*(t) - \min_{x \in X} c^T x \leq \frac{\nu}{t}
\]

Proof: By optimality condition: \(tc + \nabla F(x^*(t)) = 0 \), i.e. \(c = -t^{-1}\nabla F(x^*(t)) \),
\[
\forall y \in X : c^T x^*(t) - c^T y = -t^{-1}\nabla F(x^*(t))^T (x^*(t) - y) = t^{-1}\nabla F(x^*(t))^T (y - x^*(t)) \leq \frac{\nu}{t}
\]

Now consider an approximate solution \(x \) that is close to \(x^*(t) \):
\[
\lambda_{F_t}(x) \leq \beta
\]
where \(\beta \) is small enough.

Theorem 21.6 If \(\lambda_{F_t}(x) \leq \beta \),
\[
c^T x - \min_{x \in X} c^T x \leq \frac{1}{t} (\nu + \frac{\sqrt{\nu} \beta}{1 - \beta})
\]

Proof: First of all,
\[
c^T x - c^T x^*(t) \leq \| c \|_{x^*(t),*} \cdot \| x - x^*(t) \|_{x^*(t)} = t^{-1} \| \nabla F(x^*(t)) \|_{x^*(t),*} \cdot \| x - x^*(t) \|_{x^*(t)}
\]
Recall from last lecture that for \(x^* = \arg \min_x f(x) \) with standard self concordant \(f \):
\[
\| x - x^* \|_{x^*} \leq \frac{\lambda_f(x)}{1 - \lambda_f(x)}
\]
Hence,
\[\| x - x^*(t) \|_{x^*(t)} \leq \frac{\lambda F_t(x)}{1 - \lambda F_t(x)} \leq \frac{\beta}{1 - \beta} \]

Thus, \(c^T x - c^T x^*(t) \leq \frac{\sqrt{\nu} t \beta}{1 - \beta} \)

\[
c^T x - \min_{x \in X} c^T x = c^T x - c^T x^*(t) + c^T x^*(t) - \min_{x \in X} c^T x \leq \frac{\sqrt{\nu} t \beta}{1 - \beta} + \frac{\nu}{t}
\]

Now we can formally describe the path-following scheme.

Path-following Scheme

- Initialize \((x_0, t_0)\) with \(t_0 > 0\) and \(\lambda F_{t_0}(x_0) \leq \beta (\beta \in (0, \frac{1}{4}))\)

- For \(k \geq 0\), do
 \[
 t_{k+1} = t_k (1 + \frac{\gamma}{\sqrt{\nu}}) \\
 x_{k+1} = x_k - [\nabla^2 F(x_k)]^{-1} [t_{k+1} c + \nabla F(x_k)]
 \]

Theorem 21.7 (Rate of convergence) In the above scheme, one has

\[
c^T x_k - \min_{x \in X} c^T x \leq O(1) \frac{\nu}{t_0} \exp \left\{ -O(1) \frac{k}{\sqrt{\nu}} \right\}
\]

where the constant factor \(O(1)\) depends solely on \(\beta\) and \(\gamma\).

Remark [Complexity]

- The total complexity of Newton steps does not exceed
 \[
 N(\epsilon) \leq O\left(\sqrt{\nu} \log \frac{\nu}{t_0 \epsilon} \right)
 \]

- The total arithmetic cost of finding an \(\epsilon\)-solution by the above scheme does not exceed
 \[
 O\left(M \sqrt{\nu} \log \frac{\nu}{t_0 \epsilon} \right)
 \]

where \(M\) is the arithmetic cost for computing \(\nabla F(x)\), \(\nabla^2 F(x)\) and solving a Newton system.
Remark [Initialization] In order to obtain a fair \((x_0, t_0)\), s.t.
\[
\lambda_{F_{t_0}}(x_0) \leq \beta
\]
one can apply the following trick. Suppose \(\hat{x} \in \text{dom}(F)\) is given. Consider the auxiliary path
\[
y^*(t) = \arg\min_x [-t\nabla F(\hat{x})^T x + F(x)]
\]
When \(t = 1\), \(y^*(1) = \hat{x}\). When \(t \to 0\), \(y^*(t) = x_F := \arg\min_x F(x)\).
We can trace \(y^*(t)\) as \(t\) decreases from 1 to 0, until we approach to a point \((y_0, t_0)\) such that
\[
\lambda_{F_{t_0}}(x_0) \leq \beta.
\]