
IE 521: Convex Optimization Spring 2017, UIUC

Lecture 18: Interior Point Method - Part II – April 3

Instructor: Niao He Scribe: Shuanglong Wang

Courtesy warning: These notes do not necessarily cover everything discussed in the class. Please
email TA (swang157@illinois.edu) if you find any typos or mistakes.

In this lecture, we cover the following topics

• Classical Newton Method for Unconstrained Minimization

• (Damped) Newton Method for Self-concordant Functions

Reference:

Nesterov, Introductory Lectures on Convex Optimization, 2004, Chapter 1.2.4

18.1 Classical Newton Method

Consider the unconstrained minimization

min
x∈Rn

f(x)

where f(x) is twice continuously differentiable (not necessarily convex) on Rn.

Newton Method:
xk+1 = xk − [∇2f(xk)]

−1∇f(xk), k = 0, 1, 2, ...

The direction dk = −∇2f(xk)
−1∇f(xk) is called Newton’s direction.

Interpretation: The Newton method can be treated as

• Minimizing quadratic approximation of f : From Taylor’s expression, we have:

f(x+ h) = f(x) +∇f(x)Th+
1

2
hT∇2f(x)h+ o(‖ h ‖2)

The iteration can be viewed as minimizing the quadratic approximation of f :

xk+1 = min
x

{
f(xk) +∇f(xk)

T (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

}
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• Solving linearized optimality condition: From first-order optimality condition: ∇f(x) = 0.
Note that

∇f(x+ h) ≈ ∇f(x) +∇2f(x)h

The iteration can also be viewed as solving linearized optimality condition

∇f(xk) +∇2f(xk)(x− xk) = 0

Remark (Newton method vs Gradient Descent)

xk+1 = xk −∇2f(xk)
−1∇f(xk) (Newton)

xk+1 = xk − γk∇f(xk) (GD)

Firstly, unlike Gradient Descent, Newton’s direction is not necessarily a descent direction: for
∇f(x) 6= 0,

∇f(x)Td = −∇f(x)T∇2f(x)∇f(x) 6< 0

Secondly, Newton method is a second-order method and requires relatively high computational cost
comparing to GD.

Remark (Convergence)

(i) Newton method can break down if ∇2f(x) is degenerate.

(ii) When f is quadratic and non-degenerate, Newton method converges in one step.

(iii) The method may diverge even for a nice strongly convex function.

(iv) If started close enough to a strict local minimum, the method can converge very fast.

Example: consider the convex function f(x) =
√

1 + x2

One can easily compute that x∗ = 0, and

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2

The Newton method works as

xk+1 = xk − (1 + x2k)
3/2 xk√

1 + x2k

= −x3k

Note that

• if |x0| < 1, the method converges extremely fast

• if |x0| = 1, the method oscillates between 1 and -1

• if |x0| > 1, the method diverges.
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18.2 Classical Analysis

Theorem 18.1 (Local quadratic convergence of Newton method) Assume that

• f has a Lipschitz Hessian: ‖ ∇2f(x)−∇2f(y) ‖2≤M ‖ x− y ‖2 for M > 0.

• f has a strict local minimum x∗: ∇2f(x∗) < µI, with µ > 0.

• The initial point x0 is close enough to x∗: ‖ x0 − x∗ ‖2≤ µ
2M

Then Newton method is well-defined and converges to x∗ at a quadratic rate

‖ xk+1 − x∗ ‖2≤
M

µ
‖ xk − x∗ ‖22

Note that for a symmetric matrix A, ‖ A ‖2:= supx6=b

{
‖Ax‖2
‖x‖2

}
= maxk |λk(A)|. We first prove the

following simple useful lemma.

Lemma 18.2 Suppose f has Lipschitz Hession with constant M , then for any x, y,

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖2 ≤
M

2
‖y − x‖22.

Proof: This is because by basic calculus

∇f(y)−∇f(x) =

∫ 1

0
∇2f(x+ t(y − x))(y − x)dt

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖2 =‖
∫ 1

0
∇2f(x+ t(y − x))(y − x)dt−∇2f(x)(y − x) ‖2

=‖
∫ 1

0

[
∇2f(x+ t(y − x))−∇2f(x)

]
(y − x)dt ‖2

≤
∫ 1

0
Mt ‖ y − x ‖22 dt

=
M

2
‖ y − x ‖22

Now we are ready to prove the main theorem.

Proof: We have

xk+1 − x∗ = xk − x∗ − [∇2f(xk)]
−1∇f(xk)

= [∇2f(xk)]
−1[∇2f(xk)(xk − x∗)−∇f(xk)]

= [∇2f(xk)]
−1[∇f(x∗)−∇f(xk)−∇2f(xk)(x

∗ − xk)]
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The last equality is due to the fact that ∇f(x∗) = 0 by optimality condition. Hence,

‖ xk+1 − x∗ ‖2 ≤‖ [∇2f(xk)]
−1 ‖2‖ ∇f(x∗)−∇f(xk)−∇2f(xk)(x

∗ − xk) ‖2

≤‖ [∇2f(xk)]
−1 ‖2 ·

M

2
‖ xk − x∗ ‖22

The last inequality is due to the previous lemma.
We show now by induction that ‖ xk − x∗ ‖2≤ µ

2M .

Assume ‖ xk − x∗ ‖2≤ µ
M , then

‖ ∇2f(xk)−∇f(x∗) ‖2≤M ‖ xk − x∗ ‖2≤
µ

2

which implies that −µ
2 I 4 ∇2f(xk)−∇2f(x∗) 4 µ

2 I. Hence,

∇2f(xk) < ∇2f(x∗)− µ

2
<
µ

2
I

which implies that ‖ [∇2f(xk)]
−1 ‖2≤ 2

µ . This leads to

‖ xk+1 − x∗ ‖2≤
M

µ
‖ xk − x∗ ‖22

and ‖ xk+1 − x∗ ‖2≤ µ
2M , which concludes the proof.

Note that the local convergence holds for any unconstrained minimization regardless of convex or
not. When f is strongly convex, the analysis is even simpler.

Theorem 18.3 Assume that

• f has a Lipschitz Hessian ‖ ∇2f(x)−∇f(y) ‖2≤ L ‖ x− y ‖2

• f is µ-strongly convex, i,e, ∇2f(x) < µI,∀x

• The initial point x0 satisfies ‖ ∇f(x0) ‖2< 2µ2

M

Then the gradient converges to zero quadratically

‖ ∇f(xk+1) ‖2≤
M

2µ2
‖ ∇f(xk) ‖22

Proof: Setting y = xk+1, x = xk in the previous lemma, we have

‖ ∇f(xk+1) ‖2 ≤
M

2
‖
[
∇2f(xk)

]−1
∇f(xk) ‖22

≤ M

2
‖
[
∇2f(xk)

]−1
‖22 · ‖ ∇f(xk) ‖22

≤ M

2µ2
‖ ∇f(xk) ‖22
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Remark (Complexity) The quadratic convergence implies that:

M

µ
‖ xk − x∗ ‖2 ≤

[M
µ
‖ xk−1 − x∗ ‖2

]2
≤
[M
µ
‖ xk−2 − x∗ ‖2

]4
≤ ...

≤
[M
µ
‖ x0 − x∗ ‖2

]2k
≤ (

1

2
)2

k

Hence, ‖ xk − x∗ ‖2< µ
M 2−2

k

To achieve an accuracy ε, i.e. ‖ xk − x∗ ‖2≤ ε, the number of iterations

k ≥ log2 log2(
M

µε
)

Remark (Affine Invariance) The Newton method is invariant w.r.t. affine transformation of
variables.

Let A be a non-singular matrix consider the function

f̂(y) = f(Ay)

The Newton step for f and f̂ are

xk+1 = xk −
[
∇2f(xk)

]−1
∇f(xk)

yk+1 = yk −
[
∇2f̂(yk)

]−1
∇f̂(yk)

Let y0 = A−1x0, then yk = A−1xk. This can be shown by induction

yk+1 = yk −
[
AT∇2f(Ayk)A

]−1[
AT∇f(Ayk)

]
= A−1xk −

[
At∇2f(xk)A

]−1
AT∇f(xk)

= A−1xk −A−1∇2f(xk)
−1∇f(xk)

= A−1xk+1

In other words, Newton’s method follow the same trajectory in the ’x-space’ and ’y-space’. Hence,
the region of quadratic convergence should not depend on the Euclidean metric.

However, in the classical analysis, the assumption and the measure of error, e.g. the Lipschitz
continuity of Hessian, depend heavily on the Euclidean metric and is not affine invariant. A
natural remedy is to assume self-concordance. Self concordant function are especially well suited
for Newton method.


