Instructions.

• Homework is due Monday, February 25, at 1:00pm; no late homework accepted.

• Please use the provided LaTeX file as a template.

• You can discuss with others, but please write your own solutions.
Problem 1: Invertible Convex Function

Exercise 1.1 Prove that an invertible real-valued function f with domain $\text{dom}(f) \subset \mathbb{R}$ is convex if its inverse function f^{-1} is convex and monotone decreasing on its domain $f^{-1}(\text{dom}(f))$.

Solution. Put your solution here.

Exercise 1.2 The Lambert W function, denoted as $W(x)$, is the inverse function of $f(z) = z \exp(z)$. Below is the figure of the real-valued Lambert W function. Note that $W(x)$ is double-valued on $(-\frac{1}{e}, 0)$ and single-valued on $[0, +\infty)$. We restrict the domain of the Lambert W function to be $[0, +\infty)$ where it is invertible. Prove the Lambert W function is concave on $[0, +\infty)$.

Solution. Put your solution here.
Problem 2: Log-convex and Log-concave Functions

A function f is called **log-convex** if $f(x) > 0, \forall x \in \text{dom}(f)$ and $\log(f(x))$ is convex. Similarly, a function f is called **log-concave** if $f(x) > 0, \forall x \in \text{dom}(f)$ and $\log(f(x))$ is concave. For example, these functions $e^{ax}, e^{x_1} + e^{x_2}$ are log-convex.

Exercise 2.1 For each of the following two statements, please decide it’s true or false, and prove it if it’s true or give an counter example if it’s false.

(a) If f is log-convex, then f is also convex.

(b) If f is log-concave, then f is also concave.

Solution. Put your solution here.

Exercise 2.2 Prove that f is log-convex if and only if $\forall \lambda \in [0, 1], \forall x, y \in \text{dom}(f)$, we have

$$f(\lambda x + (1 - \lambda)y) \leq f(x)^\lambda f(y)^{1-\lambda}.$$

Solution. Put your solution here.

Exercise 2.3 Prove that if f and g are log-convex, then $f + g$ is also log-convex.

Solution. Put your solution here.

Exercise 2.4 Prove that the Lambert W function is log-concave on $[0, \infty)$.

Solution. Put your solution here.
Problem 3: Convex Conjugate

Exercise 3.1 (Compute Conjugate) Calculate the conjugate of the following functions:

(a) $f(x) = e^{e^x}$ on \mathbb{R} (using Lambert W function)
(b) $f(x) = \frac{1}{2} \|x\|^2$ on \mathbb{R}^n
(c) $f(x) = \log(\sum_{i=1}^{n} e^{x_i})$ on \mathbb{R}^n

Solution. Put your solution here.

Exercise 3.2 Let $f(x)$ and $g(x)$ be closed convex functions, and $h(x) = f(x) + g(x)$, then

$$h^*(y) = \inf_z \{f^*(z) + g^*(y - z)\}$$

where the latter is the convolution of f^* and g^*.

[Hint: First show that $(\inf_z \{F(z) + G(y - z)\})^* = F^*(y) + G^*(y)$, and then apply with $F = f^*$, and $G = g^*$.]

Solution. Put your solution here.
Problem 4: Revenue Function Is Jointly Concave in Market Shares

There are two products in the market with prices p_1 and p_2, respectively. The choice probability of product $i = 1, 2$ is given by

$$q_i = \frac{\exp(a_i - bp_i)}{1 + \exp(a_1 - bp_1) + \exp(a_2 - bp_2)},$$

and the probability that a customer doesn’t purchase anything is given by

$$q_0 = \frac{1}{1 + \exp(a_1 - bp_1) + \exp(a_2 - bp_2)}.$$

Assume the parameters a_1, a_2, b are known. This is the so-called Multinomial Logit (MNL) model. Observe that $q_0 + q_1 + q_2 = 1$, so the choice probabilities q_1 and q_2 can be interpreted as the market shares of products 1 and 2, respectively. Under the MNL model, the expected revenue (price of product 1 * market share of product 1 + price of product 2 * market share of product 2) is

$$R(p_1, p_2) = p_1 q_1 + p_2 q_2 = \frac{p_1 \exp(a_1 - bp_1) + p_2 \exp(a_2 - bp_2)}{1 + \exp(a_1 - bp_1) + \exp(a_2 - bp_2)}.$$

Exercise 4.1 Rewrite the expected revenue R as a function of market shares q_1 and q_2 and prove it is jointly concave in market shares q_1 and q_2.

Solution. Put your solution here.