Outline

Path Following Scheme

Self-concordant Function

Self-concordant in \mathbb{R}
Self-concordant in \mathbb{R}^n
Calculus
Geometric Properties
Recall

- Interior-point methods play an important role in convex optimization.
- Modern LP/SOCP/SDP solvers, such as SeDuMi, SDPT3 are built on interior-point methods.

Historical Note

- **1984**: Karmarkar introduced poly-time interior point method for LP
- **late-1980s**: Renegar & Gonzaga introduced path-following interior point method for LP
- **1988**: Nesterov and Nemirovski extended interior point method for convex programs
- **after 1990s**: many solvers for convex programs
Problem Setting

\[
\begin{align*}
\min_x & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \ i = 1, \ldots, m \\
\end{align*}
\] (P)

\[X = \{x : g_i(x) \leq 0, \forall i = 1, \ldots, m\}\]

- \(f, g_i\) are twice continuously differentiable and convex
- Slater condition holds
- The feasible domain \(X\) is bounded

Remark. \(X\) is convex compact and has non-empty interior.
Path Following Scheme

Barrier Method: Solve a series of unconstrained problems

\[
\min_x t \cdot f(x) + F(x) \quad (P_t)
\]

where \(t > 0 \) is a penalty parameter and \(F(x) \) is a **barrier function** that satisfies:

- \(F : \text{int}(X) \rightarrow \mathbb{R} \) and \(F(x) \rightarrow +\infty \) as \(x \rightarrow \partial(X) \)
- \(F \) is twice continuously differentiable and convex
- \(F \) is **non-degenerate**, i.e. \(\nabla^2 F(x) \succ 0, \forall x \in \text{int}(X) \)

Remark. For any \(t > 0 \), \((P_t)\) has a unique solution in \(\text{int}(X) \).
Path Following Scheme

Central Path: the path \(\{x^*(t), t > 0\} \) where

\[
x^*(t) = \arg\min_x \{ t \cdot f(x) + F(x) \}
\]

Remark.

\[x^*(t) \to x^*, \text{ as } t \to \infty \]

Question: Need to specify

1. the barrier function \(F(x) \) ?
2. the method to solve unconstrained problems \((P_t)\)?
3. the policy to update the penalty parameter \(t \)?
Illustration: Linear Program

\[
\begin{align*}
\min_x & \quad c^T x \\
\text{s.t.} & \quad a_i^T x \leq b_i, \ i = 1, \ldots, m
\end{align*}
\]

\((P)\)

Logarithmic Barrier

\[
\min_x \quad c^T x - \frac{1}{t} \sum_{i=1}^{m} \ln(b_i - a_i^T x)
\]

\((P_t)\)
Self-concordant Function in \mathbb{R}

Definition. $f : \mathbb{R} \to \mathbb{R}$ is self-concordant if f is convex and

$$|f'''(x)| \leq \kappa f''(x)^{3/2}, \forall x \in \text{dom}(f)$$

for some constant $\kappa \geq 0$.

- When $\kappa = 2$, f is called **standard** self-concordant.

Example 1. Logarithmic function: $f(x) = -\ln(x), x > 0$ is standard self-concordant:

\[
f'(x) = -\frac{1}{x}, f''(x) = \frac{1}{x^2}, f'''(x) = -\frac{2}{x^3}, \quad \frac{|f'''(x)|}{f''(x)^{3/2}} = 2
\]
Exercise: self-concordant or not?

- Linear function: \(f(x) = cx \)

- Quadratic function: \(f(x) = \frac{a}{2}x^2 + bx + c \ (a > 0) \)

- Exponential function: \(f(x) = e^x \)

- Power functions:
 \[
 f(x) = \frac{1}{x^p} (p > 0), \ (x > 0)

 f(x) = |x|^p (p > 2)

 f(x) = x^{2p} (p > 2)
 \]
Self-concordant Function is Affine Invariant

Proposition. If $f(x)$ is self-concordant, $\tilde{f}(y) = f(ay + b)$ is also self-concordant with the same constant.

Proof.

- First, \tilde{f} is convex;
- Second, it is easy to show that

$$
\frac{\tilde{f}'''(y)}{\tilde{f}''(y)^{3/2}} = \frac{|a^3f'''(ay + b)|}{[a^2f''(ay + b)]^{3/2}} = \frac{f'''(ay + b)}{f''(ay + b)^{3/2}} \leq \kappa.
$$
Definition. \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is self-concordant if it is self-concordant along every line, i.e., \(\forall x \in \text{dom}(f), h \in \mathbb{R}^n \),

\[
\phi(t) = f(x + th)
\]

is self-concordant with some constant \(\kappa \geq 0 \).

\(\triangleright \) When \(\kappa = 2 \), \(f \) is called standard self-concordant.

Example 2. Logarithmic function: \(f(x) = -\ln(b - a^T x) \) is standard self-concordant on its domain.
Equivalent Definition

Denote the k-th differential of f taken at $x \in \text{dom}(f)$ along the directions h_1, \ldots, h_k:

$$D^k f(x)[h_1, \ldots, h_k] = \frac{\partial^k}{\partial t_1 \ldots \partial t_k} |_{t_1 = \ldots = t_k = 0} f(x + t_1 h_1 + \ldots + t_k h_k)$$

Definition. A function $f : \mathbb{R}^n \to \mathbb{R}$ is self-concordant if

$$D^3 f(x)[h, h, h] \leq \kappa (D^2 f(x)[h, h])^{3/2}, \forall x \in \text{dom}(f), h \in \mathbb{R}^n$$

for some constant $\kappa \geq 0$.
Example: Logarithmic Quadratic Function

Example 3. The function below is standard self-concordant

\[f(x) = -\ln \left(-\frac{1}{2} x^T Q x + b^T x + c \right), \text{ where } Q \succeq 0. \]

Denote \(q(x) = -\frac{1}{2} x^T Q x + b^T x + c \).

- Note that \(f(x) \) is convex
- \(Df(x)[h] = -\frac{1}{q(x)} (b^T h - x^T Q h) := \omega_1 \)
- \(D^2 f(x)[h, h] = \frac{1}{q^2(x)} (b^T h - x^T Q h)^2 + \frac{1}{q(x)} h^T A h := \omega_1^2 + \omega_2 \)
- \(D^3 f(x)[h, h, h] = -\frac{2}{q^3(x)} (b^T h - x^T Q h)^3 - \frac{3}{q^2(x)} (b^T h - x^T A h)^2 Q h = 2\omega_1^3 + 3\omega_1\omega_2 \)

\[
\frac{|D^3 f(x)[h, h, h]|}{(D^2 f(x)[h, h])^{3/2}} = \frac{|2\omega_1^3 + 3\omega_1\omega_2|}{(\omega_1^2 + \omega_2)^{3/2}} \leq 2
\]
Operations Preserving Self-Concordance

1. **Affine invariant**: If \(f(y) \) is self-concordant with constant \(\kappa \), then the function

\[
\tilde{f}(x) = f(Ax + b)
\]

is also self-concordant with constant \(\kappa \).

2. **Summation**: If \(f_1(x) \) and \(f_2(x) \) are self-concordant with constants \(\kappa_1, \kappa_2 \), then the function

\[
\tilde{f}(x) = f_1(x) + f_2(x)
\]

is self-concordant with constant \(\kappa = \max\{\kappa_1, \kappa_2\} \).

3. **Scaling**: If \(f(x) \) is self-concordant with constant \(\kappa \), and \(\alpha > 0 \) then the function

\[
\tilde{f}(x) = \alpha f(x)
\]

is also self-concordant with \(\kappa = \frac{\kappa}{\sqrt{\alpha}} \).
Example

Example 4. \(f(x) = - \sum_{i=1}^{m} \ln(b_i - a_i^T x) \) is standard self-concordant on \(\text{int}(X) \), where

\[
X = \left\{ x : a_i^T x \leq b_i, i = 1, \ldots, m \right\}.
\]

Example 5. \(f(x_1, x_2) = - \log(x_2^2 - x_1^2) - 2 \log(x_1) - 3 \log(x_2) \) is self-concordant on \(\text{int}(X) \), where

\[
X = \{(x_1, x_2) : 0 \leq x_1 \leq x_2 \}.
\]

Remark. Note that \(f(x) \) is also a valid barrier function on \(X \).
Local Norm

Definition. The local norm of h at $x \in \text{dom}(f)$ as

$$\|h\|_x = \sqrt{h^T \nabla^2 f(x) h}.$$

Proposition. For standard self-concordant function f, it holds that

$$\left| D^3 f(x) [h_1, h_2, h_3] \right| \leq 2 \|h_1\|_x \cdot \|h_2\|_x \cdot \|h_3\|_x$$

Remark. (“Lipschitz continuity”) at a high level,

$$\left| \frac{d}{dt} \bigg|_{t=0} D^2 f(x + t\delta) [h, h] \right| \leq 2 \|\delta\|_x D^2 f(x) [h, h]$$

The second derivative is relatively Lipschitz continuous w.r.t. the local norm defined by f.
Illustration in \(\mathbb{R} \)

Let \(f \) be 1-self-concordant on \(\mathbb{R} \) and strictly convex

\[
\frac{|f'''(x)|}{|f''(x)|^{3/2}} \leq 1 \Rightarrow \left| \frac{d}{dx} \left[f''(x)^{-1/2} \right] \right| \leq 1
\]

\[
\Rightarrow -y \leq \int_{0}^{y} \frac{d}{dx} \left[f''(x)^{-1/2} \right] dx \leq y
\]

\[
\Rightarrow -y \leq \frac{1}{\sqrt{f''(y)}} - \frac{1}{\sqrt{f''(0)}} \leq y
\]

Simplifying the above terms, we arrive at \(\forall 0 \leq y < (\sqrt{f''(0)})^{-1} \)

\[
\frac{f''(0)}{(1 + y\sqrt{f''(0)})^2} \leq f''(y) \leq \frac{f''(0)}{(1 - y\sqrt{f''(0)})^2} \tag{\star}
\]
We can further derive that $\forall 0 \leq y < (\sqrt{f''(0)})^{-1}$

$$\frac{(y \sqrt{f''(0)})^2}{1 + y \sqrt{f''(0)}} \leq y(f'(y) - f'(0)) \leq \frac{(y \sqrt{f''(0)})^2}{1 - y \sqrt{f''(0)}} \quad (***)$$

$$f(y) - f(0) - f'(0)y \geq y \sqrt{f''(0)} - \ln(1 + y \sqrt{f''(0)}) \quad (****)$$

$$f(y) - f(0) - f'(0)y \leq -y \sqrt{f''(0)} - \ln(1 - y \sqrt{f''(0)}) \quad (****)$$
Relative Lipschitz of Hessian and Gradient

Definition. (Dikin Ellipsoid)

\[W_r(x) = \{ y : \| y - x \|_x \leq r \} \]
\[W_{r}^o(x) = \{ y : \| y - x \|_x < r \} \]

Proposition. For \(x \in \text{dom}(f) \), we have \(W_{1}^o(x) \subseteq \text{dom}(f) \).

Theorem. For \(x \in \text{dom}(f) \), we have \(\forall y \in W_{1}^o(x) : \)

\[
(1 - \| y - x \|_x)^2 \nabla^2 f(x) \preceq \nabla^2 f(y) \preceq (1 - \| y - x \|_x)^{-2} \nabla^2 f(x)
\]

\[
\frac{\| y - x \|_x^2}{1 + \| y - x \|_x} \leq \langle \nabla f(y) - \nabla f(x), y - x \rangle \leq \frac{\| y - x \|_x^2}{1 - \| y - x \|_x}
\]
Linear Approximation

Theorem. For $x \in \text{dom}(f)$, we have

$$f(y) \geq f(x) + \langle f'(x), y - x \rangle + \omega(\| y - x \|_x), \forall y \in \text{dom}(f)$$

$$f(y) \leq f(x) + \langle f'(x), y - x \rangle + \omega^*(\| y - x \|_x), \forall y \in W_1^o(x)$$

where $\omega(t) = t - \ln(1 + t)$ and $\omega^*(t) = -t - \ln(1 - t)$.

Remark. Check Theorems 4.1.6-8 in (Nesterov, 2004).
References

- Nemirovski (2004), Interior Point Polynomial Time Methods in Convex Programming, Chapter 1
- Nesterov (2004), Introductory Lectures on Convex Optimization, Chapter 4.1