IE 521 Convex Optimization

Lecture 11: Center of Gravity, Ellipsoid Method

Niao He

27th February 2019
Outline

Complexity vs Convergence

Cutting Plane Methods

Center of Gravity Method

Ellipsoid Method
Given an input $\epsilon > 0$, a problem instance P,

- **Oracle complexity**: number of oracles required to solve the problem (P) up to accuracy $\epsilon > 0$

- **Arithmetic complexity**: number of arithmetic operation (bit-wise operation) requirement to solve the problem (P) up to accuracy $\epsilon > 0$
Convergence

Given solutions \(\{x_t\} \) and accuracy measure \(\mathcal{E}(x_t) \)

\[
\lim_{t \to \infty} \frac{\mathcal{E}(x_{t+1})}{\mathcal{E}(x_t)^p} = q
\]

- **Linear convergence:** \(p = 1, q \in (0, 1) \)
 - E.g., \(\mathcal{E}(x_t) = O(e^{-\alpha t}), \) where \(\alpha > 0 \)

- **Sublinear convergence:** \(p = 1, q = 1 \)
 - E.g., \(\mathcal{E}(x_t) = \frac{1}{t^\beta}, \) where \(\beta > 0 \)

- **Superlinear convergence:** \(p = 1, q = 0 \)
 - E.g., \(\mathcal{E}(x_t) = O(e^{-\alpha t^2}), \) where \(\alpha > 0 \)

- **Convergence of order \(p \):** \(p > 1, q > 0 \)
 - When \(p = 2 \), called quadratic convergence.
 - E.g., \(\mathcal{E}(x_t) = O(e^{-\alpha p^t}), \) where \(\alpha > 0 \)
Illustration: Convergence

Figure: sublinear, linear, quadratic convergence
Solving Convex Program

We focus on the following general convex problem

\[
\min_{x \in X} f(x)
\]

Problem Setting:

- \(f \) is convex and admits zero- and first-order oracles;
- \(X \subset \mathbb{R}^n \) is a convex body (convex, compact, with nonempty interior) and admits separation oracle.
Cutting Plane Methods

\[
\min_{x \in X} f(x)
\]

(a) Separation oracle \\
(b) First-order oracle

(a) \(X \subseteq \{ y : a^T(y - x) \leq 0 \} \) if \(x \notin X \);
(b) \(X^\star \subseteq \{ y : g^T(y - x) \leq 0 \} \) if \(x \) is not optimal.

Figures from Boyd and Vandenberghe notes (2008)
Cutting Plane Methods

Figure: Localization Polyhedron

\[\mathcal{P}_1 \supseteq \cdots \supseteq \mathcal{P}_k \supseteq X^* \]

Q. How to choose the query point to cut the most off?

Figures from Boyd and Vandenberghe notes (2008)
Cutting Plane Methods

- **Center of gravity method**: choose the query to be the center of the gravity of \mathcal{P}_k.

- **Maximum volume ellipsoid cutting plane method**: choose the query to be the center of the maximum volume ellipsoid contained in \mathcal{P}_k.

- **Chebyshev center cutting-plane method**: choose the query point to be the Chebyshev center of \mathcal{P}_k, i.e., the center of the largest Euclidean ball that lies in \mathcal{P}_k.
Center of Gravity Method

(Levin, 1965; Newman, 1965)

- Initialize $G_0 = X$
- At iteration $t = 1, 2, ..., T$, do
 - Compute the center of gravity:
 \[x_t = \frac{1}{\text{Vol}(G_{t-1})} \int_{x \in G_{t-1}} x \, dx \]
 - Call the first order oracle and obtain $g_t \in \partial f(x_t)$
 - Set $G_t = G_{t-1} \cap \{ y : g_t^T(y - x_t) \leq 0 \}$
- Output $\hat{x}_T \in \arg\min_{x \in \{x_1, ..., x_T\}} f(x)$
Center of Gravity Method

Lemma (Grünbaum [1960]). Let $C \subset \mathbb{R}^n$ be a convex body with $\int x \, dx = 0$. Then $\forall a \neq 0$

$$\text{Vol}(C \cap \{x : a^T x \leq 0\}) \leq (1 - (\frac{n}{n+1})^n) \text{Vol}(C)$$

$$\leq (1 - \frac{1}{e}) \text{Vol}(C) \approx 0.63 \text{Vol}(C)$$

Remark. It follows that

$$\text{Vol}(G_t) \leq (1 - \frac{1}{e})^t \text{Vol}(X), \ t \geq 1$$
Theorem. The center of gravity method return $\hat{x}_T \in X$:

$$f(\hat{x}_T) - f^* \leq \left(1 - \frac{1}{e}\right) \frac{T}{n} \cdot \text{Var}_X(f)$$

where $\text{Var}_X(f) = \max_{x \in X} f(x) - \min_{x \in X} f(x)$.

- Linear convergence rate
- Oracle complexity: $N(\epsilon) = O\left(n \log\left(\frac{\text{Var}_X(f)}{\epsilon}\right)\right)$
- Main disadvantage: computing the center of gravity is extremely difficult, even for polytopes.
Proof of Convergence

- Note $x^* \in G_t, \forall t \geq 1$ and $\text{Vol}(G_t) \leq (1 - \frac{1}{e})^t \text{Vol}(X)$.

- Consider the neighborhood of x^*:

 $X_\delta = \{x^* + \delta(x - x^*) : x \in X\}$, where $\delta \in ((1 - \frac{1}{e})^{\frac{T}{n}}, 1)$.

- Observe that $X_\delta / G_T \neq 0$.

 \[\text{Vol}(X_\delta) = \delta^n \text{Vol}(X) > (1 - \frac{1}{e})^T \text{Vol}(X) \geq \text{Vol}(G_T)\]

- Let $y = x^* + \delta(z - x^*) \in X_\delta / G_T$ for some $z \in X$.
 Thus, for certain $t^* \leq T$, we have $y \in G_{t^*-1}/G_{t^*}$.

- Since $y \notin G_{t^*}$, we have $g_{t^*}^T(y - x^*) > 0$, so $f(y) > f(x^*)$.

- Since $y = x^* + \delta(z - x^*)$, by convexity of f,

 \[f(y) = f(\delta z + (1 - \delta)x^*) \leq \delta f(z) + (1 - \delta)f(x^*)\]
 \[= f(x^*) + \delta [f(z) - f(x^*)]\]
 \[\leq f(x^*) + \delta \text{Var}_X(f)\]

 Hence $f(\hat{x}_T) \leq f(x^*) \leq f^* + \delta \text{Var}_X(f)$.

Ellipsoid as Localizer

Definition. Let $Q \succ 0$ be symmetric, and c be the center, an **ellipsoid** is uniquely characterized by (c, Q):

\[
E(c, Q) = \left\{ x \in \mathbb{R}^n : (x - c)^T Q^{-1}(x - c) \leq 1 \right\}
\]

\[
= \left\{ x = c + Q^{1/2}u : u^T u \leq 1 \right\}
\]

- $\text{Vol}(E(c, Q)) = \text{Det}(Q^{1/2})\text{Vol}(B_n)$, where B_n is a unit Euclidean ball in \mathbb{R}^n with $\text{Vol}(B_n) = \frac{\pi^{n/2}}{\Gamma(n/2 + 1)}$.
Let $H_+ = \{ x : \omega^T x \leq \omega^T c \}$ be a half space with $\omega \neq 0$ that pass through the center c of the ellipsoid $E(c, Q)$.
Half Ellipsoid

Let $H_+ = \{ x : \omega^T x \leq \omega^T c \}$ be a half space with $\omega \neq 0$ that pass through the center c of the ellipsoid $E(c, Q)$.

- $E \cap H_+ \subseteq E^+ = E(c^+, Q^+)$ with

$$c^+ = c - \frac{1}{n+1} q, \text{ where } q = \frac{Q\omega}{\sqrt{\omega^T Q\omega}},$$

$$Q^+ = \frac{n^2}{n^2 + 1} (Q - \frac{2}{n+1} qq^T).$$

- Volume decrease:

$$\text{Vol}(E^+) \leq \exp \left\{ - \frac{1}{2n} \right\} \text{Vol}(E)$$
Ellipsoid Method

(Shor; Nemirovsky, Yudin, 1970s)

- Initialize $E(c_0, Q_0)$ with $c_0 = 0, Q_0 = R^2 I$
- At iteration $t = 1, 2, \ldots, T$, do
 - Call separation oracle with the input c_{t-1}
 - If $c_{t-1} \notin X$, call separation oracle and obtain $\omega \neq 0$
 - If $c_{t-1} \in X$, call first order oracle and obtain $\omega \in \partial f(c_t)$
 - Set the new ellipsoid $E(c_t, Q_t)$ with
 \[
 c_t = c_{t-1} - \frac{1}{n+1} \frac{Q_{t-1}\omega}{\sqrt{\omega^T Q_{t-1}\omega}}
 \]
 \[
 Q_t = \frac{n^2}{n^2 - 1} (Q_{t-1} - \frac{2}{n+1} \frac{Q_{t-1}\omega\omega^T Q_{t-1}}{\omega^T Q_{t-1}\omega})
 \]
- Output $\hat{x}_T = \arg \min_{c \in \{c_1, \ldots, c_T\} \cap X} f(c)$
Illustration of Ellipsoid Method

Figure: Illustration

Figure from Boyd, EE364b lecture notes
Convergence of Ellipsoid Method

Theorem. Assume \(B(\bar{x}, r^2 I) \subseteq X \subseteq B(0, R^2 I) \). The Ellipsoid method after \(T \) steps satisfies:

\[
f(\hat{x}_T) - f^* \leq \frac{R}{r} \cdot \text{Var}_X(f) \exp \left\{ -\frac{T}{2n^2} \right\}
\]

- Linear convergence rate
- Oracle complexity: \(N(\epsilon) = \mathcal{O} \left(n^2 \log \left(\frac{\text{Var}_X(f)}{\epsilon} \right) \right) \)
- Modest per iteration computation cost: \(O(n^2) \)
- Polynomial solvability: as long as it takes polynomial time to call the separation and first-order oracles
Proof of Convergence

- Similar as the proof for the center of gravity method.
- Consider the neighborhood of x^*:
 $$X_\delta = \{ x^* + \delta(x - x^*) : x \in X \}, \quad \delta \in (\frac{R}{r} \exp\left\{-\frac{T}{2n^2}\right\}, 1).$$
- Note $X_\delta / E(c_T, Q_T) \neq \emptyset$, because
 $$\text{Vol}(X_\delta) = \delta^n \text{Vol}(X) \geq \delta^n r^n \text{Vol}(B_n) \geq R^n \exp\left\{-\frac{T}{2n}\right\} \text{Vol}(B_n) \geq \text{Vol}(E(c_T, Q_T))$$
- Rest is the same as proof of center of gravity method.
Stopping Criterion

- In practice, f^* is often unknown and it is impossible to compute $f(x_t) - f^*$.

- Construct online lower bounds for f^*: $\ell_t \leq f^*$

\[
f^* \geq f(x_t) + \omega_t^T (x^* - x_t), \quad \omega_t \in \partial f(x_t) \\
g \geq f(x_t) + \inf_{x \in E(c_t, Q_t)} \omega_t^T (x - x_t) \\
= f(x_t) - \sqrt{\omega_t Q_t \omega_t}
\]

- Hence, $\sqrt{\omega_t Q_t \omega_t} \leq \epsilon \implies f(x_t) - f^* \leq \epsilon$

- Tighter lower bound:

\[
\ell_t = \max_{1 \leq \tau \leq t} \left(f(x_\tau) - \sqrt{\omega_\tau Q_\tau \omega_\tau} \right)
\]
Discussion

Advantages and disadvantages of the Ellipsoid method:

+ : universal
+ : simple to implement
+ : steady for small size problems
+ : low order dependence on the number of constraints
− : quadratic growth on the size of problem
− : inefficient for large-scale problems
Experiment on SVM

\[
\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} \max(1 - y_i(w^T x_i + b), 0) + \lambda \|w\|_2^2
\]

Figure: Ellipsoid Method for SVM on WBDC dataset (n=30)
References

» Ben-Tal & Nemirovski, Chapter 7