Outline

Recap
Lagrange Duality
Optimality Conditions
Minimax Theorem

Solving Convex Programs
History
Terminologies: Accuracy, Oracles, Complexity
Cutting Plane Methods
Recap: Lagrange Duality

General convex program:

\[
\begin{align*}
\min_{x \in X} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \ i = 1, \ldots, m
\end{align*}
\]

\((P)\)

Lagrange dual program:

\[
\begin{align*}
\max_{\lambda} & \quad L(\lambda) := \inf_{x \in X} L(x, \lambda) \\
\text{s.t.} & \quad \lambda \geq 0
\end{align*}
\]

\((D)\)

where \(L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)\).
Recap: Optimality Conditions

KKT conditions:

\[x_* \in X \text{ is optimal for (P)} \]

\[
\begin{align*}
\left(\text{slater}\right) & \quad \exists \lambda^* \geq 0, \text{ s.t.} \\
& \quad \left\{ \begin{array}{l}
\nabla f(x_*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(x_*) \in N_X(x_*) \\
\lambda_i^* g_i(x_*) = 0, \forall i = 1, \ldots, m
\end{array} \right.
\end{align*}
\]

Saddle point condition:

\[x_* \in X \text{ is optimal for (P)} \]

\[
\begin{align*}
\left(\text{slater}\right) & \quad \exists \lambda^* \geq 0, \text{ s.t.} (x^*, \lambda^*) \text{ is a saddle point of } L(x, \lambda)
\end{align*}
\]
Recap: Minimax Theorem

Theorem. (von Neumann, 1928) Assume
- X and Y be convex and compact,
- $L(x, y)$ is continuous, convex-concave on $X \times Y$.

Then $L(x, y)$ has a saddle point on $X \times Y$, and

$$\min_{x \in X} \max_{y \in Y} L(x, y) = \max_{y \in Y} \min_{x \in X} L(x, y)$$
Minimax Lemma

Lemma. Let $f_i(x), i = 1, \ldots, m$ be convex and continuous on a convex compact set X. Then

$$\min_{x \in X} \max_{1 \leq i \leq m} f_i(x) = \min_{x \in X} \sum_{i=1}^{m} \lambda^*_i f_i(x)$$

for some $\lambda^* \in \Delta_m := \{ \lambda \in \mathbb{R}^m : \lambda \geq 0, \sum_{i=1}^{m} \lambda_i = 1 \}$.
Proof of Minimax Lemma

Consider the epigraph form of the problem \(\min_{x \in X} \max_{1 \leq i \leq m} f_i(x) \):

\[
\min_{x, t} \quad t
\]

s.t. \(f_i(x) - t \leq 0, \, i = 1, \ldots, m \) \hspace{1cm} (P)

\((x, t) \in X_t = X \times \mathbb{R}\).

- The optimal value \(t^* = \min_{x \in X} \max_{1 \leq i \leq m} f_i(x) \) is finite.
- (P) satisfies Slater condition and is solvable.
- The Lagrange function is \(L(x, t; \lambda) = t + \sum_{i=1}^{m} \lambda_i (f_i(x) - t) \).
- There exists \((x^*, t^*) \in X_t \) and \(\lambda^* \geq 0 \), such that

\[
\begin{align*}
\frac{\partial L}{\partial t} (x^*, t^*; \lambda^*) &= 1 - \sum_{i=1}^{m} \lambda_i^* = 0 \\
\sum_{i=1}^{m} \lambda_i^* (f_i(x^*) - t^*) &= 0
\end{align*}
\]

\[\Rightarrow \begin{cases}
\sum_{i=1}^{m} \lambda_i^* = 1 \\
\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = t^*
\end{cases}\]

Therefore, \(\exists \lambda^* \in \Delta_m \) such that

\[
\min_{x \in X} \max_{1 \leq i \leq m} f_i(x) = t^* = \min_{(x, t) \in X_t} L(x, t; , \lambda^*) = \min_{x \in X} \sum_{i=1}^{m} \lambda_i^* f_i(x)
\]
Proof of Minimax Theorem

\[(P) : \min_{x \in X} \tilde{L}(x) := \max_{y \in Y} L(x, y)\]
\[(D) : \max_{y \in Y} L(y) := \min_{x \in X} L(x, y)\]

Both \((P)\) and \((D)\) are solvable. Suffice to show \(\text{Opt}(D) \geq \text{Opt}(P)\).

- Define the sets \(X(y) = \{x \in X : L(x, y) \leq \text{Opt}(D)\}\).
- If \(\{X(y) : y \in Y\}\) intersect, then \(\text{Opt}(P) \leq \text{Opt}(D)\).
- Note that for any \(y \in Y\), \(X(y)\) is nonempty, compact and convex (why?).
- By Helley’s theorem, sufficient to show that every finite collection of these sets intersect.
Proof of Minimax Theorem (Continued)

\[X(y) = \{ x \in X : L(x, y) \leq \text{Opt}(D) \} . \]

- Suppose \(\exists y_1, \ldots, y_m \in Y, \text{ s.t. } X(y_1) \cap \ldots \cap X(y_m) = \emptyset \). Then

\[
\text{Opt}(D) < \min_{x \in X} \max_{i=1,\ldots,m} L(x, y_i)
\]

\[
= \min_{x \in X} \sum_{i=1}^{m} \lambda_i^* L(x, y_i) \quad \text{(by Minimax Lemma)}
\]

\[
\leq \min_{x \in X} L(x, \sum_{i=1}^{m} \lambda_i^* y_i) \quad \text{(by concavity of } L(x, \cdot))
\]

\[
= L(\bar{y}) \leq \text{Opt}(D)
\]

Contradiction!
Sion’s Minimax Theorem (1958)

Theorem. Assume

- X and Y are convex and one of them is compact,
- $L(x, y) : X \times Y \rightarrow \mathbb{R}$ is **lower semi-continuous** and **quasi-convex** on $x \in X$,
- $L(x, y) : X \times Y \rightarrow \mathbb{R}$ is **upper semi-continuous** and **quasi-concave** on $y \in Y$.

Then $L(x, y)$ has a saddle point on $X \times Y$, and

$$
\min_{x \in X} \max_{y \in Y} L(x, y) = \max_{y \in Y} \min_{x \in X} L(x, y)
$$
From Theory to Algorithm

Question: How to Solve Convex Programs?

\[\min_{x \in X} f(x) \]
\[\text{s.t. } g_i(x) \leq 0, \quad i = 1, \ldots, m \]
History Note

- **1947**: Dantzig introduced the Simplex Method for LP
- **1950s-60s**: Simplex Method was successfully applied to many problems of large scale
- **1973**: Klee and Minty proved that Simplex Method is not a polynomial-time algorithm
- **1976-77**: Shor, Nemirovski and Yudin independently introduced the Ellipsoid method for convex programs
- **1979**: Khachiyan proved the poly-time solvability of LP

Naum Shor (1937-2006)
Leonid Khachiyan (1952-2005)
History Note (Continued)

- **1984:** Karmarkar introduced poly-time interior point method for LP
- **late-1980s:** Renegar & Gonzaga introduced path-following interior point method for LP
- **1988:** Nesterov and Nemirovski extended interior point method for convex programs
- **after 1990s:** many solvers for convex programs

Terminologies:
- Accuracy
- Oracles
- Complexity
- Cutting Plane

History Note (Continued)

- 1984: Karmarkar introduced poly-time interior point method for LP
- late-1980s: Renegar & Gonzaga introduced path-following interior point method for LP
- 1988: Nesterov and Nemirovski extended interior point method for convex programs
- after 1990s: many solvers for convex programs

Solvers:
- mosek
- CVX

CVX Research
Accuracy Measures

\[
\begin{align*}
\min_{x \in X} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \ i = 1, \ldots, m
\end{align*}
\]

\((P) \)

Goal: Find an “approximate” solution to \((P) \) with a small inaccuracy \(\epsilon > 0 \).

Accuracy Measure: given \(\hat{x} \), the accuracy measure \(\epsilon(\hat{x}) \) should satisfy:

- \(\epsilon(\hat{x}) \geq 0 \)
- \(\epsilon(\hat{x}) \to 0 \) as \(\hat{x} \to x^* \).
Examples of Accuracy Measure

- $\epsilon(\hat{x}) = \inf_{x^* \in X^*} \|\hat{x} - x^*\|_2$

- $\epsilon(\hat{x}) = f(\hat{x}) - \text{Opt}(P)$, where \hat{x} is feasible

- $\epsilon(\hat{x}) = \max (f(\hat{x}) - \text{Opt}(P), \max_{1 \leq i \leq m} [g_i(\hat{x})]_+)$

- $\epsilon(\hat{x}) = f(\hat{x}) - \text{Opt}(P) + \sum_{i=1}^{m} \rho_i [g_i(\hat{x})]_+$, where $\rho_i > 0$.
Black-box Oracles

Access the objective and constraints through oracles:

- **Zero-order oracle:**
 \[\mathcal{O} = (f(x), g_1(x), \ldots, g_m(x)) \]

- **First-order oracle:**
 \[\mathcal{O} = (\partial f(x), \partial g_1(x), \ldots, \partial g_m(x)) \]

- **Second-order oracle:**
 \[\mathcal{O} = (\nabla^2 f(x), \nabla^2 g_1(x), \ldots, \nabla^2 g_m(x)) \]

- **Separation oracle for \(X \):** given \(x \), either reports \(x \in X \) or returns a separator, i.e. a vector \(a \neq 0 \), such that
 \[a^T x \geq \sup_{y \in X} a^T y. \]
Example

\[
\min_x \quad f(x) := \max_{1 \leq j \leq J} f_j(x)
\]

s.t. \quad X := \{x : g_i(x) \leq 0, \, i = 1, \ldots, m\}

where \(f_j(x)\) and \(g_i(x)\) are convex and differentiable. Assume we can compute \(f_j(x), \nabla f_j(x), \forall j\) and \(g_i(x), \nabla g_i(x), \forall i\).

- First-order oracle for \(f\):
 \[
 \partial f(x) = \text{Conv} \{\nabla f_j(x) | f(x) = f_j(x)\}
 \]

- Separation oracle for \(X\):
 \[
 x \in X \iff g_i(x) \leq 0, \forall i = 1, \ldots, m
 \]
 \[
 x \not\in X \iff \exists i' \in \{1, \ldots, m\}, \text{ s.t. } g_{i'}(x) > 0
 \]
 \[
 \Rightarrow \nabla g_{i'}(x)^T (y - x) \leq g_{i'}(y) - g_{i'}(x) \leq 0, \forall y \in X
 \]
 \[
 \Rightarrow \omega^T x \geq \sup_{y \in X} \omega^T y, \text{ for } \omega = \nabla g_{i'}(x)
 \]
Complexity

Given an input $\epsilon > 0$, a problem instance P,

- **Oracle complexity**: number of oracles required to solve the problem (P) up to accuracy $\epsilon > 0$

- **Arithmetic complexity**: number of arithmetic operation (bit-wise operation) requirement to solve the problem (P) up to accuracy $\epsilon > 0$
Polynomial Solvability

Definition. A solution method M for a family \mathcal{P} of problems is called **polynomial** if $\forall P \in \mathcal{P}$, the arithmetic complexity

$$\text{Compl}_M(\epsilon, P) \leq O(1) \left[\frac{\text{dim}(P)}{\epsilon}\right]^{\alpha} \cdot \ln\left(\frac{V(P)}{\epsilon}\right)$$

where $V(P)$ is some data-dependent quantity.

Definition. \mathcal{P} is called **polynomially solvable** if it admits polynomial solution methods.
Illustration: Solving 1D Convex Problem

\[
\min_{x \in [a,b]} f(x)
\]

Zero-order line search:

- Initialize a localizer \(G_1 = [a, b] \ni x^* \)
- At iteration \(t \), choose \(a_t, b_t \in G_t \), update the localizer

\[
G_{t+1} \leftarrow \begin{cases} [a, b_t] \cap G_t, & \text{if } f(a_t) \leq f(b_t) \\ [a_t, b] \cap G_t, & \text{if } f(a_t) > f(b_t) \end{cases}
\]

If we choose \(a_t, b_t \) that split \([a, b]\) into equal length, \(|G_{t+1}| = \frac{2}{3}|G_t|\). We get linear convergence.
Illustration: Solving 1D Convex Problem

\[
\min_{x \in [a, b]} f(x)
\]

First-order line search (Bisection)

- Initialize a localizer \(G_1 = [-R, R] \supset [a, b] \)
- At iteration \(t \), compute the midpoint \(c_t \) of \(G_t = [a_t, b_t] \)
 - if \(c_t \notin [a, b] \),
 \[
 G_{t+1} = \begin{cases}
 [a_t, c_t], & \text{if } c_t > b \\
 [c_t, b_t], & \text{if } c_t < a
 \end{cases}
 \]
 - if \(c_t \in [a, b] \) and \(f'(c_t) \neq 0 \)
 \[
 G_{t+1} = \begin{cases}
 [a_t, c_t], & \text{if } f'(c_t) > 0 \\
 [c_t, b_t], & \text{if } f'(c_t) < 0
 \end{cases}
 \]
 - otherwise, this implies \(c_t \) is optimal

Note \(x^* \in G_t \) and \(|G_{t+1}| = \frac{1}{2} |G_t| \), we get linear convergence.
Cutting Plane Methods

\[
\min_{x \in X} f(x)
\]

(a) Separation oracle

(b) First-order oracle

(a) \(X \subseteq \{ y : a^T(y - x) \leq 0 \} \) if \(x \notin X \);
(b) \(X^* \subseteq \{ y : g^T(y - x) \leq 0 \} \) if \(x \) is not optimal.

Figures from Boyd and Vandenberghe notes (2008)
Cutting Plane Methods

Figure: Localization Polyhedron

\[\mathcal{P}_1 \supseteq \cdots \supseteq \mathcal{P}_k \supseteq X \]

Q. How to choose the query point to cut the most off?

Figures from Boyd and Vandenberghe notes (2008)
Cutting Plane Methods

- **Center of gravity method**: choose the query to be the center of the gravity of P_k.

- **Maximum volume ellipsoid cutting plane method**: choose the query to be the center of the maximum volume ellipsoid contained in P_k.

- **Chebyshev center cutting-plane method**: choose the query point to be the Chebyshev center of P_k, i.e., the center of the largest Euclidean ball that lies in P_k.
References

- Ben-Tal & Nemirovski, Chapter 7