Outline

Warm-up

Topology Review

Convex Sets
 Definitions
 Convex Hull
 Examples
 Calculus of Convexity
 Topological Properties
 Representation Theorem
Which set is different from others?

Figure: Four sets
Which set is different from others?

Figure: Four sets
Interior, Closure, Boundary

Definition. Let \(X \) be a nonempty set in \(\mathbb{R}^n \).

- A point \(x_0 \) is called an *interior point* if \(\exists r > 0 \), such that \(B(x_0, r) := \{ x : \|x - x_0\|_2 \leq r \} \subseteq X \).
- A point \(x_0 \) is called a *limit point* if \(\exists \{ x_n \} \subseteq X \), such that \(x_n \rightarrow x_0 \) as \(n \rightarrow \infty \).

Definition.

- Interior: \(\text{int}(X) = \) the set of all interior point of \(X \).
- Closure: \(\text{cl}(X) = \) the set of all limit points of \(X \).
- Boundary: \(\partial(X) = \text{cl}(X)/\text{int}(X) \)

Q. Let \(X = \) irrationals on \([0, 1]\). What are \(\text{int}(X) \) and \(\text{cl}(X) \)?
Open and Closed Sets

Definition.
- X is **closed** if $\text{cl}(X) = X$;
- X is **open** if $\text{int}(X) = X$.

Fact.
- $\text{int}(X) \subseteq X \subseteq \text{cl}(X)$;
- X is closed iff $X^c = \mathbb{R}^n / X$ is open;
- $\bigcap_{\alpha \in \mathcal{A}} X_\alpha$ is closed if X_α is closed for all $\alpha \in \mathcal{A}$.
- $\bigcup_{i=1}^n X_i$ is closed if X_i is closed for $i = 1, \ldots, n$.

Q. If X_1, X_2 are closed, is $X_1 + X_2$ closed?
Convex Set

Definition

- A set \(X \subseteq \mathbb{R}^n \) is convex if
 \[
 x, y \in X, \lambda \in [0, 1] \Rightarrow \lambda x + (1 - \lambda)y \in X.
 \]

- In another word, the line segment \([x, y]\) that connects any two elements \(x, y\) lies entirely in the set.

\(\text{Figure: Examples of convex and non-convex sets}\)
Definition. Given any elements x_1, \ldots, x_k, the combination $\lambda_1 x_1 + \ldots + \lambda_k x_k$ is called

- **Convex**: if $\lambda_i \geq 0$, $i = 1, \ldots, k$ and $\lambda_1 + \ldots + \lambda_k = 1$;
- **Conic**: if $\lambda_i \geq 0$, $i = 1, \ldots, k$;
- **Affine**: if $\lambda_1 + \ldots + \lambda_k = 1$;
- **Linear**: if $\lambda_i \in \mathbb{R}$, $i = 1, \ldots, k$.
Convex Sets, Cones, Affine and Linear Subspaces

Definition.

- A set is **convex** if all convex combinations of its elements are in the set;
- A set is a **convex cone** if all conic combinations of its elements are in the set;
- A set is a **affine subspace** if all affine combinations of its elements are in the set;
- A set is a **linear subspace** if all linear combinations of its elements are in the set.

Clearly, a linear subspace is always a convex cone; a convex cone is always a convex set.

Note: Cones vs. Convex cones.
Definiton. Given any set X, we define

- **Convex hull** of X:
 \[\text{Conv}(X) = \text{set of all convex combinations of points in } X. \]

- **Conic hull** of X:
 \[\text{Cone}(X) = \text{set of all conic combinations of points in } X. \]

- **Affine hull** of X:
 \[\text{Aff}(X) = \text{set of all affine combinations of points in } X. \]

Figure: Examples of convex hulls
Properties of Convex Sets

Proposition.

1. A convex hull is always convex.
2. If \(X \) is convex, then \(\text{Conv}(X) = X \).
3. For any set \(X \), \(\text{Conv}(X) \) is the smallest convex set that contains \(X \).
Examples of Convex Sets

Example 1. Simple sets:

- **Hyperplane**: \(\{ x \in \mathbb{R}^n : a^T x = b \} \)
- **Halfspace**: \(\{ x \in \mathbb{R}^n : a^T x \leq b \} \)
- **Affine space**: \(\{ x \in \mathbb{R}^n : Ax = b \} \)
- **Polyhedron**: \(\{ x \in \mathbb{R}^n : Ax \leq b \} \)
- **Simplex**: \(\{ x \in \mathbb{R}^n : x \geq 0, \sum_{i=1}^{n} x_i = 1 \} \).

Example 2. Euclidean balls:

\[\{ x \in \mathbb{R}^n : \| x - a \|_2 \leq r \} \]

Example 3. Ellipsoid:

\[\{ x \in \mathbb{R}^n : (x - a)^T Q(x - a) \leq r^2 \} \]

where \(Q \succ 0 \) and is symmetric.
Examples of Convex Cones

Example 1. Positive Orthant:
\[\{ x \in \mathbb{R}^n : x \geq 0 \} \]

Example 2. Norm cones:
\[\{(x, t) \in \mathbb{R}^{n+1} : \| x \|_2 \leq t \} \]

Example 3. Positive semidefinite matrices:
\[\mathbb{S}_+^n := \{ X \in \mathbb{S}^n : X \succeq 0 \} \]
Operations that Preserves Convexity

Intersection
- If $X_\alpha, \alpha \in \mathcal{A}$ are convex sets, then so is
 $$\bigcap_{\alpha \in \mathcal{A}} X_\alpha.$$

Cartesian product:
- If $X_i \subseteq \mathbb{R}^{n_i}, i = 1, \ldots, k$ are convex, then so is
 $$X_1 \times \cdots \times X_k.$$

Weighted summation:
- If $X_i \subseteq \mathbb{R}^n, i = 1, \ldots, k$ convex, then so is
 $$\alpha_1 X_1 + \cdots + \alpha_k X_k.$$
Operations that Preserves Convexity

Affine image:

- If \(X \subseteq \mathbb{R}^n \) is a convex set and \(\mathcal{A}(x) : x \mapsto Ax + b \) is an affine mapping from \(\mathbb{R}^n \) to \(\mathbb{R}^k \), then so is

\[
\mathcal{A}(X) := \{Ax + b : x \in X\}.
\]

Proof:

Let \(y_1, y_2 \in \mathcal{A}(X) \Rightarrow \exists x_1, x_2 \in X \) such that
\(y_1 = Ax_1 + b \) and \(y_2 = Ax_2 + b \). For \(\lambda \in [0, 1] \),

\[
\lambda y_1 + (1 - \lambda)y_2 = A(\lambda x_1 + (1 - \lambda)x_2) + b \in \mathcal{A}(X)
\]

because \(\lambda x_1 + (1 - \lambda)x_2 \in X \).
Operations that Preserves Convexity

Inverse affine image:

- If $X \subseteq \mathbb{R}^n$ is a convex set and $\mathcal{A}(y) : y \mapsto Ay + b$ is an affine mapping from \mathbb{R}^k to \mathbb{R}^n, then so is

 $$\mathcal{A}^{-1}(X) := \{y : Ay + b \in X\}.$$

- Proof: self-exercise.

Example. The solution set of linear matrix inequality:

$$\{x | x_1 A_1 + \cdots + x_k A_k \preceq B\}$$

where A_i, B are positive semidefinite matrices.
Nice Properties of Convex Sets

Proposition. Let X be convex with nonempty interior. Then

- If $x_0 \in \text{int}(X)$ and $x \in \text{cl}(X)$, then $[x_0, x) \in \text{int}(X)$.
- Moreover, $\text{int}(X)$ is dense in $\text{cl}(X)$.

Remark. In general, $\text{int}(X)$ and $\text{cl}(X)$ can differ dramatically.

- If $X = \text{irrationals}$ on $[0, 1]$, $\text{int}(X) = \emptyset$, $\text{cl}(X) = [0, 1]$.

Q. What happens if X is convex but $\text{int}(X) = \emptyset$?
Nice Properties of Convex Sets

Definition. (Relative Interior and Dimension)

- \(\text{rint}(X) = \{ x : \exists r > 0, \text{ s.t. } B(x, r) \cap \text{Aff}(X) \subseteq X \} \)
- \(\text{dim}(X) = \text{dim}(\text{Aff}(X)) \)

Fact. For a convex and nonempty set, \(\text{rint}(X) \neq \emptyset \).

Proposition. Let \(X \) be a nonempty convex set. Then

a) \(\text{int}(X), \text{cl}(X), \text{rint}(X) \) are convex

b) \(x_0 \in \text{rint}(X), x \in \text{cl}(X) \Rightarrow [x_0, x] \in \text{rint}(X), \forall \lambda \in (0, 1] \)

c) \(\text{cl}(\text{rint}(X)) = \text{cl}(X) \)

d) \(\text{rint}(\text{cl}(X)) = \text{rint}(X) \)
Question

Suppose there are 100 different kinds of herbal tea, everyone of them is a blend of 25 herbs. Donald wants a particular mixture of all herbal teas with equal proportions. What’s the least number of teas he should buy?
Carathéodory Representation Theorem

Theorem. Let $X \subseteq \mathbb{R}^n$ be non empty and $\dim(X) = d \leq n$. Every point $x \in \text{Conv}(X)$ is a convex combination of at most $(d + 1)$ points, i.e.

$$\text{Conv}(X) = \left\{ \sum_{i=1}^{d+1} \lambda_i x_i : x_i \in X, \lambda_i \geq 0, \sum_{i=1}^{d+1} \lambda_i = 1 \right\}.$$

Proof: Suppose the minimal representation of $x \in \text{Conv}(X)$ has $m \geq d + 1$ terms, $x = \sum_{i=1}^{m} \alpha_i x_i$, where $\alpha_i \geq 0, \sum_{i=1}^{m} \alpha_i = 1$. The system of linear equations

$$\begin{cases}
\sum_{i=1}^{m} \delta_i x_i = 0 \\
\sum_{i=1}^{m} \delta_i = 0
\end{cases}$$

has non trivial solution.

Rewrite $x = \sum_{i=1}^{m} (\alpha_i - t\delta_i) x_i$. Let $\lambda_i(t) = (\alpha_i - t\delta_i), \forall i$, we have $\sum \lambda_i(t) = 1$. Let $t_* = \min \left\{ \frac{\alpha_i}{\delta_i}, \delta_i > 0 \right\} := \frac{\alpha_j}{\delta_j}$, then $\lambda_i(t_*) > 0, \forall i \neq j$ and $\lambda_j(t_*) = 0$. This leads to a smaller representation of x.

References

- Boyd & Vandenberghe, Chapter 2.1-2.3
- Ben-Tal & Nemirovski, Chapter 1.1